电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

广东省广州市高考数学1月模拟试卷 文(含解析)-人教版高三全册数学试题VIP免费

广东省广州市高考数学1月模拟试卷 文(含解析)-人教版高三全册数学试题_第1页
1/24
广东省广州市高考数学1月模拟试卷 文(含解析)-人教版高三全册数学试题_第2页
2/24
广东省广州市高考数学1月模拟试卷 文(含解析)-人教版高三全册数学试题_第3页
3/24
2016年广东省广州市高考数学模拟试卷(文科)(1月份)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若全集U=R,集合A={x|0<x<2},B={x|x﹣1>0},则A∩∁UB=()A.{x|0<x≤1}B.{x|1<x<2}C.{x|0<x<1}D.{x|1≤x<2}2.已知a,b∈R,i是虚数单位,若a﹣i与2+bi互为共轭复数,则(a+bi)2=()A.5﹣4iB.5+4iC.3﹣4iD.3+4i3.已知||=1,=(0,2),且•=1,则向量与夹角的大小为()A.B.C.D.4.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.设a=log37,b=21.1,c=0.83.1,则()A.b<a<cB.a<c<bC.c<b<aD.c<a<b6.已知f(x)在R上是奇函数,且满足f(x+4)=f(x),当x∈(0,2)时,f(x)=2x2,则f(7)=()A.2B.﹣2C.﹣98D.987.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为2的直角三角形,俯视图是半径为1的圆周和两条半径,则这个几何体的体积为()A.πB.πC.πD.π8.数列{an}中,对任意n∈N*,a1+a2+…+an=2n﹣1,则a12+a22+…+an2等于()A.(2n﹣1)2B.C.4n﹣1D.9.已知sinφ=,且φ∈(,π),函数f(x)=sin(ωx+φ)(ω>0)的图象的相邻两条对称轴之间的距离等于,则f()的值为()A.﹣B.﹣C.D.10.执行如图所示的程序框图输出的结果为()A.(﹣2,2)B.(﹣4,0)C.(﹣4,﹣4)D.(0,﹣8)11.已知双曲线=1(a>0,b>0)的右焦点到左顶点的距离等于它到渐近线距离的2倍,则其渐近线方程为()A.2x±y=0B.x±2y=0C.4x±3y=0D.3x±4y=012.已知y=f(x)为R上的连续可导函数,且xf′(x)+f(x)>0,则函数g(x)=xf(x)+1(x>0)的零点个数为()A.0B.1C.0或1D.无数个二.填空题:本大题共4小题,每小题5分.13.函数y=的定义域是.14.设x,y满足约束条件,则z=x﹣2y的最大值为.15.设数列{an}的各项都是正数,且对任意n∈N*,都有4Sn=an2+2an,其中Sn为数列{an}的前n项和,则数列{an}的通项公式为an=.16.已知以F为焦点的抛物线y2=4x上的两点A,B满足=2,则弦AB中点到抛物线准线的距离为.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小;(Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值.18.“冰桶挑战赛”是一项社交网络上发起的慈善公益活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某参与者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)为了解冰桶挑战赛与受邀者的性别是否有关,某调查机构进行了随机抽样调查,调查得到如下2×2列联表:接受挑战不接受挑战合计男性451560女性251540合计7030100根据表中数据,能否有90%的把握认为“冰桶挑战赛与受邀者的性别有关”?附:K2=P(K2≥k0)0.1000.0500.0100.001k02.7063.8416.63510.82819.在直三棱柱ABC﹣A1B1C1中,AB=AC=AA1=3,BC=2,D是BC的中点,F是C1C上一点.(1)当CF=2,求证:B1F⊥平面ADF;(2)若FD⊥B1D,求三棱锥B1﹣ADF体积.20.定圆M:=16,动圆N过点F且与圆M相切,记圆心N的轨迹为E.(I)求轨迹E的方程;(Ⅱ)设点A,B,C在E上运动,A与B关于原点对称,且|AC|=|CB|,当△ABC的面积最小时,求直线AB的方程.21.已知函数f(x)=(m,n∈R)在x=1处取到极值2.(1)求f(x)的解析式;(2)设函数g(x)=lnx+,若对任意的x1∈[﹣1,1],总存在x2∈[1,e],使得g(x2)≤f(x1)+,求实数a的取值范围.请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题计分.做答时请写清题号.选修4-1:几...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

广东省广州市高考数学1月模拟试卷 文(含解析)-人教版高三全册数学试题

远洋启航书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部