河南省郑州市2015届高考数学二模试卷(文科)一.选择题1.(5分)已知复数z=(i为虚数单位),则z的虚部为()A.﹣1B.0C.1D.i2.(5分)集合U={1,2,3,4,5,6},A={2,3},B={x∈Z|x2﹣6x+5<0},则∁U(A∪B)=()A.{1,5,6}B.{1,4,5,6}C.{2,3,4}D.{1,6}3.(5分)“a=1“是“直线ax+y+1=0与直线(a+2)x﹣3y﹣2=0垂直”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件4.(5分)已知甲,乙两组数据如茎叶图所示,若他们的中位数相同,平均数也相同,则图中的m,n的比值=()A.1B.C.D.5.(5分)将函数f(x)=cosx﹣(x∈R)的图象向左平移a(a>0)个单位长度后,所得的图象关于原点对称,则a的最小值是()A.B.C.D.6.(5分)已知双曲线的一个焦点与抛物线x2=24y的焦点重合,其一条渐近线的倾斜角为30℃,则该双曲线的标准方程为()A.B.C.D.7.(5分)已知a,b,c分别是△内角A,B,C的对边,且(b﹣c)(sinB+sinC)=(a﹣)•sinA,则角B的大小为()A.30°B.45°C.60°D.120°8.(5分)执行如图所示的程序图,输出的S值是()1A.B.﹣1C.0D.﹣1﹣9.(5分)若正数a,b满足2+log2a=3+log3b=log6(a+b),则+的值为()A.36B.72C.108D.10.(5分)如图所示是一个几何体的三视图,则这个几何体外接球的表面积为()A.8πB.16πC.32πD.64π11.(5分)已知函数f(x)=,函数g(x)=f(x)﹣2x恰有三个不同的零点,则实数a的取值范围是()A.C.215.(5分)已知实数x,y满足,设b=x﹣2y,若b的最小值为﹣2,则b的最大值为.16.(5分)如图,矩形ABCD中,AB=2BC=4,E为边AB的中点,将△ADE沿直线DE翻转成△A1DE.若M为线段A1C的中点,则在△ADE翻转过程中,正确的命题是.①|BM|是定值;②点M在圆上运动;③一定存在某个位置,使DE⊥A1C;④一定存在某个位置,使MB∥平面A1DE.三.解答题17.(12分)已知数列{an}的前n项和为Sn,且Sn=2an﹣2.(1)求数列{an}的通项公式;(2)设bn=log2a1+log2a2+…+log2an,求(n﹣8)bn≥nk对任意n∈N*恒成立的实数k的取值范围.18.(12分)最近2015届高考改革方案已在上海和江苏开始实施,某教育机构为了了解我省广大师生对新2015届高考改革的看法,对某市部分学校500名师生进行调查,统计结果如下:赞成改革不赞成改革无所谓教师120y40学生xz130在全体师生中随机抽取1名“赞成改革”的人是学生的概率为0.3,且z=2y.(1)现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?(2)在(1)中所抽取的“不赞成改革”的人中,随机选出三人进行座谈,求至少一名教师被选出的概率.19.(12分)如图,已知三棱柱ABC﹣ABC侧棱柱垂直于底面,AB=AC,∠BAC=90°点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面AA′C′C;(2)设AB=λAA′,当λ为何值时,CN⊥平面A′MN,试证明你的结论.320.(12分)设椭圆C:+=1(a>b>0),F1、F2为左右焦点,B为短轴端点,且S=4,离心率为,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点M、N,且满足|+|=|﹣|?若存在,求出该圆的方程,若不存在,说明理由.21.(12分)已知函数f(x)=ax﹣1+lnx,其中a为常数.(1)当a∈(﹣∞,﹣)时,若f(x)在区间(0,e)上的最大值为﹣4,求a的值;(2)当a=﹣时,若函数g(x)=|f(x)|﹣﹣存在零点,求实数b的取值范围.四.选做题:选修4-1:集合证明选讲22.(10分)如图,已知圆O是△ABC的外接圆,AB=BC,AD是BC边上的高,AE是圆O的直径.过点C作圆O的切线交BA的延长线于点F.(Ⅰ)求证:AC•BC=AD•AE;(Ⅱ)若AF=2,CF=2,求AE的长.选做题:4-4:坐标系与参数方程423.在直角坐标系xOy中,曲线M的参数方程为(α为参数),若以直角坐标系中的原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线N的极坐标方程为ρsin(θ+)=t(t为参数).(Ⅰ)求曲线M和N的直角坐标方程;(Ⅱ)若曲线N与曲线M有公共点,求t的取值范围.不等式选讲24....