第3讲导数及其应用1.(2016·四川)已知a为函数f(x)=x3-12x的极小值点,则a等于()A.-4B.-2C.4D.2答案D解析 f(x)=x3-12x,∴f′(x)=3x2-12,令f′(x)=0,则x1=-2,x2=2.当x∈(-∞,-2),(2,+∞)时,f′(x)>0,则f(x)单调递增;当x∈(-2,2)时,f′(x)<0,则f(x)单调递减,∴f(x)的极小值点为a=2.2.(2016·课标全国乙)若函数f(x)=x-sin2x+asinx在(-∞,+∞)上单调递增,则a的取值范围是()A.[-1,1]B.C.D.答案C解析方法一(特殊值法):不妨取a=-1,则f(x)=x-sin2x-sinx,f′(x)=1-cos2x-cosx,但f′(0)=1--1=-<0,不具备在(-∞,+∞)单调递增,排除A,B,D.故选C.方法二(综合法): 函数f(x)=x-sin2x+asinx在(-∞,+∞)单调递增,∴f′(x)=1-cos2x+acosx=1-(2cos2x-1)+acosx=-cos2x+acosx+≥0,即acosx≥cos2x-在(-∞,+∞)恒成立.当cosx=0时,恒有0≥-,得a∈R;当00是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.2.f′(x)≥0是f(x)为增函数的必要不充分条件,当函数在某个区间内恒有f′(x)=0时,则f(x)...