2015-2016学年湖北省武汉市新洲一中、黄陂一中联考高二(下)期末数学试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.i为虚数单位,则复平面内复数z=i+i2的共轭复数的对应点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为P1,P2,P3,则()A.P1=P2<P3B.P2=P3<P1C.P1=P3<P2D.P1=P2=P33.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值()A.2个B.1个C.3个D.4个4.由直线x=﹣,y=0与曲线y=sinx所围成的封闭图形的面积为()A.B.C.D.15.一个物体的运动方程为s=1﹣t+t2其中s的单位是米,t是单位是秒,那么物体在3秒末的瞬时速度是()A.7米/秒B.6米/秒C.5米/秒D.8米/秒6.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11B.12C.13D.147.已知变量x与y正相关,且由观测数据算得样本平均数=3,=3.5,则由该观测数据算得的线性回归方程可能是()A.=0.4x+2.3B.=2x﹣2.4C.=﹣2x+9.5D.=﹣0.3x+4.48.先后掷骰子两次,都落在水平桌面上,记正面朝上的点数分别为x,y.设事件A:x+y为偶数;事件B:x,y至少有一个为偶数且x≠y.则P(B|A)=()A.B.C.D.19.已知三个正态分布密度函数(x∈R,i=1,2,3)的图象如图所示,则()A.μ1<μ2=μ3,σ1=σ2>σ3B.μ1>μ2=μ3,σ1=σ2<σ3C.μ1=μ2<μ3,σ1<σ2=σ3D.μ1<μ2=μ3,σ1=σ2<σ310.育英学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有()A.80种B.90种C.120种D.150种11.从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为10克的方法总数为m,下列各式的展开式中x10的系数为m的选项是()A.(1+x)(1+x2)(1+x3)…(1+x11)B.(1+x)(1+2x)(1+3x)…(1+11x)C.(1+x)(1+2x2)(1+3x3)…(1+11x11)D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11)12.已知函数g(x)满足g(x)=g′(1)ex﹣1﹣g(0)x+,且存在实数x0使得不等式2m﹣1≥g(x0)成立,则m的取值范围为()A.(﹣∞,2]B.(﹣∞,3]C.[1,+∞)D.[0,+∞)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卡对应题号的位置上.答错位置,书写不清,模棱两可均不得分.13.用数学归纳法证明命题“当n为正奇数时,xn+yn能被x+y整除”,第二步假设n=2k﹣1(k∈N+)命题为真时,进而需证n=时,命题亦真.14.(x+)(2x﹣)5的展开式中各项系数的和为2,则该展开式中常数项为.15.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y﹣4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为.216.已知曲线C的极坐标方程是ρ=cos(θ+).以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线l的参数方程是:(t为参数),则直线l与曲线C相交所成的弦的弦长为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤17.某校为了解一个英语教改实验班的情况,举行了一次测试,将该班30位学生的英语成绩进行统计,得图示频率分布直方图,其中成绩分组区间是:[50,60),[60,70),[70,80),[80,90),[90,100].(Ⅰ)求出该班学生英语成绩的众数,平均数及中位数;(Ⅱ)从成绩低于80分的学生中随机抽取2人,规定抽到的学生成绩在[50,60)的记1绩点分,在[60,80)的记2绩点分,设抽取2人的总绩点分为ξ,求ξ的分布列.18.某媒体对“男女延迟退休”这一公众关注的问题进行了民意调查,如表是在某单位得到的数据(人数):(1)能否有90%以上的把握认为对这一...