电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学大二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线练习 理-人教版高三全册数学试题VIP免费

高考数学大二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线练习 理-人教版高三全册数学试题_第1页
1/5
高考数学大二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线练习 理-人教版高三全册数学试题_第2页
2/5
高考数学大二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线练习 理-人教版高三全册数学试题_第3页
3/5
第二篇专题六第2讲椭圆、双曲线、抛物线[限时训练·素能提升](限时45分钟,满分74分)一、选择题(本题共7小题,每小题5分,共35分)1.(2018·张家界三模)双曲线C:-=1(a>0,b>0)的离心率为2,其渐近线与圆(x-a)2+y2=相切,则该双曲线的方程为A.x2-=1B.-=1C.-=1D.-=1解析由题意得到e==2,∴b=a,则双曲线的渐近线方程为y=±x,渐近线与圆(x-a)2+y2=相切,∴=⇒a=1,b=.则双曲线方程为x2-=1.答案A2.(2018·山师附中模拟)已知点A是抛物线C:x2=2py(p>0)上一点,O为坐标原点,若以点M(0,8)为圆心,|OA|的长为半径的圆交抛物线C于A,B两点,且△ABO为等边三角形,则p的值是A.B.2C.6D.解析由题意知|MA|=|OA|,所以点A的纵坐标为4,又△ABO为等边三角形,所以点A的横坐标为,又点A是抛物线C上一点,所以=2p×4,解得p=.答案D3.(2018·绍兴模拟)已知椭圆+=1(a>b>0),以O为圆心,短半轴长为半径作圆O,过椭圆的长轴的一端点P作圆O的两条切线,切点为A,B,若四边形PAOB为正方形,则椭圆的离心率为A.B.C.D.解析由题意知|OA|=|AP|=b,|OP|=a,OA⊥AP,所以2b2=a2,=,故e==,故选B.答案B4.(2018·长沙二模)已知双曲线C1:-=1(a>0,b>0)经过抛物线C2:y2=2px(p>0)的焦点,且双曲线的渐近线与抛物线的准线围成一个等边三角形,则双曲线C1的离心率是A.2B.C.D.解析依题意得,曲线C2的焦点就是曲线C1的右顶点,故曲线C2的准线方程为x=-a,将x=-a代入曲线C1的渐近线方程y=±x得,该等边三角形的边长为2b,高为a,于是有a=b,双曲线C1的离心率e==.答案D5.(2018·全国卷Ⅰ)已知双曲线C:-y2=1,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=A.B.3C.2D.4解析因为双曲线-y2=1的渐近线方程为y=±x,所以∠MON=60°.不妨设过点F的直线与直线y=x交于点M,由△OMN为直角三角形,不妨设∠OMN=90°,则∠MFO=60°,又直线MN过点F(2,0),所以直线MN的方程为y=-(x-2),由得所以M,所以|OM|==,所以|MN|=|OM|=3,故选B.答案B6.(2017·全国卷Ⅰ)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)解析当03时,焦点在y轴上,要使C上存在点M满足∠AMB=120°,则≥tan60°=,即≥,得m≥9,故m的取值范围为(0,1]∪[9,+∞),故选A.答案A7.(2018·茂名联考)过抛物线E:x2=2py(p>0)的焦点,且与其对称轴垂直的直线与E交于A,B两点,若E在A,B两点处的切线与E的对称轴交于点C,则△ABC外接圆的半径是A.(-1)pB.pC.pD.2p解析因为直线过抛物线E:x2=2py(p>0)的焦点,且与其对称轴垂直,∴A,B,由y′=可知E在A,B两点处的切线斜率为k1=1,k2=-1,∴k1·k2=-1,∴AC⊥BC,即△ABC为直角三角形,又|AB|=2p,所以△ABC外接圆的半径是p.答案B二、填空题(本题共3小题,每小题5分,共15分)8.(2018·北京)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为________.解析由题意知,a>0,对于y2=4ax,当x=1时,y=±2,由于l被抛物线y2=4ax截得的线段长为4,所以4=4.所以a=1,所以抛物线的焦点坐标为(1,0).答案(1,0)9.(2017·全国卷Ⅰ)已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点,若∠MAN=60°,则C的离心率为________.解析双曲线的右顶点为A(a,0),一条渐近线的方程为y=x,即bx-ay=0,则圆心A到此渐近线的距离d==.又因为∠MAN=60°,圆的半径为b,所以b·sin60°=,即=,所以e==.答案10.(2018·北京)已知椭圆M:+=1(a>b>0),双曲线N:-=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.解析设椭圆的右焦点为F(c,0)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学大二轮复习 专题六 解析几何 第2讲 椭圆、双曲线、抛物线练习 理-人教版高三全册数学试题

;绿洲书城+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部