专题对点练4从审题中寻找解题思路一、选择题1.已知方程=1表示双曲线,且该双曲线两焦点间的距离为4,则n的取值范围是()A.(-1,3)B.(-1,)C.(0,3)D.(0,)答案A解析因为双曲线的焦距为4,所以c=2,即m2+n+3m2-n=4,解得m2=1.又由方程表示双曲线得(1+n)(3-n)>0,解得-1
0,b>0)的两个焦点,P是C上一点,若|PF1|+|PF2|=6a,且△PF1F2最小的内角为30°,则双曲线C的渐近线方程是()A.x±y=0B.x±y=0C.x±2y=0D.2x±y=0答案A解析由题意,不妨设|PF1|>|PF2|,则根据双曲线的定义得,|PF1|-|PF2|=2a,又|PF1|+|PF2|=6a,解得|PF1|=4a,|PF2|=2a.在△PF1F2中,|F1F2|=2c,而c>a,所以有|PF2|<|F1F2|,所以∠PF1F2=30°,所以(2a)2=(2c)2+(4a)2-2·2c·4acos30°,得c=a,所以b=a,所以双曲线的渐近线方程为y=±x=±x,即x±y=0.4.已知双曲线C:x2-=1,过点P(1,1)作直线l,使l与C有且只有一个公共点,则满足上述条件的直线l的条数共有()A.3B.2C.1D.4答案D解析当直线l斜率存在时,令l:y-1=k(x-1),代入x2-=1中整理有(4-k2)x2+2k(k-1)x-k2+2k-5=0.当4-k2=0,即k=±2时,l和双曲线的渐近线平行,有一个公共点.当k≠±2时,由Δ=0,解得k=,即k=时,有一个切点.直线l斜率不存在时,x=1也和曲线C有一个切点.综上,共有4条满足条件的直线.5.已知二次函数f(x)=ax2+bx+c,其中b>a,且对任意x∈R都有f(x)≥0,则M=的最小值为()A.B.C.D.答案D解析由题意得a>0,b2-4ac≤0,即c≥,则M=.令=t,则t>1,于是M≥(t-1)+,当且仅当t-1=,即b=(1+)a,c=a时等号成立.所以M=的最小值为.6.设双曲线=1(02,∴e2=4,即e=2,故选A.二、填空题7.在△ABC中,角A,B,C所对应的边分别为a,b,c,已知bcosC+ccosB=2b,则=.答案2解法一因为bcosC+ccosB=2b,所以b·+c·=2b,化简可得=2.解法二因为bcosC+ccosB=2b,所以sinBcosC+sinCcosB=2sinB,故sin(B+C)=2sinB,故sinA=2sinB,则a=2b,即=2.8.下表中的数阵为“森德拉姆素数筛”,其特点是每行每列都成等差数列,记第i行第j列的数为ai,j(i,j∈N*),则(1)a9,9=;(2)表中的数82共出现次.导学号〚16804161〛234567…35791113…4710131619…5913172125…61116212631…71319253137……………………答案(1)82(2)5解析(1)a9,9表示第9行第9列,第1行的公差为1,第2行的公差为2,……第9行的公差为9,第9行的首项b1=10,则b9=10+8×9=82.(2)第1行数组成的数列a1,j(j=1,2,…)是以2为首项,公差为1的等差数列,所以a1,j=2+(j-1)·1=j+1;第i行数组成的数列ai,j(j=1,2,…)是以i+1为首项,公差为i的等差数列,所以ai,j=(i+1)+(j-1)i=ij+1,由题意得ai,j=ij+1=82,即ij=81,且i,j∈N*,所以81=81×1=27×3=9×9=1×81=3×27,故表格中82共出现5次.9.已知锐角三角形ABC的三个内角A,B,C所对的边分别是a,b,c,若b是和2的等比中项,c是1和5的等差中项,则a的取值范围是.导学号〚16804162〛答案(2)解析因为b是和2的等比中项,所以b==1;因为c是1和5的等差中项,所以c==3.又因为△ABC为锐角三角形,①当a为最大边时,有解得3≤a<;②当c为最大边时,有解得2