高三数学复习限时训练(86)1、已知为等差数列,,.为的前n项和,则使得达到最大值的n是.2、等差数列{}前n项和为.已知+-=0,=38,则=.3、设Sn是等差数列的前n项和,若=,则=.4、已知nS是等差数列na的前n项,且=0,若对恒成立,则正整数构成的集合为.5、设各项均为正数的数列na的前n项和为nS,已知3122aaa,数列nS是公差为d的等差数列。(1)求数列na的通项公式(用dn,表示);(2)设c为实数,对满足nmknm且3的任意正整数knm,,,不等式knmcSSS都成立。求c的最大值。用心爱心专心1限时训练(86)参考答案1、42、103、4、5、(1)由题意知:0d,11(1)(1)nSSndand21323213233()aaaaSSSS,2221113[()](2),adaad化简,得:22111120,,aaddadad22(1),nnSdndndSnd,当2n时,222221(1)(21)nnnaSSndndnd,适合1n情形。故所求2(21)nand(2)(方法一)222222222mnkSScSmdndckdmnck,222mnck恒成立。又nmknm且3,222222292()()92mnmnmnkk,故92c,即c的最大值为29。(方法二)由1ad及1(1)nSand,得0d,22nSnd。于是,对满足题设的knm,,,mn,有用心爱心专心22222222()99()222mnkmnSSmndddkS。所以c的最大值max92c。另一方面,任取实数92a。设k为偶数,令331,122mknk,则knm,,符合条件,且22222222331()[(1)(1)](94)222mnSSmnddkkdk。于是,只要22942kak,即当229ka时,22122mnkSSdakaS。所以满足条件的92c,从而max92c。因此c的最大值为92。用心爱心专心3