电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学 专题40 抛物线热点题型和提分秘籍 理-人教版高三全册数学试题VIP免费

高考数学 专题40 抛物线热点题型和提分秘籍 理-人教版高三全册数学试题_第1页
1/31
高考数学 专题40 抛物线热点题型和提分秘籍 理-人教版高三全册数学试题_第2页
2/31
高考数学 专题40 抛物线热点题型和提分秘籍 理-人教版高三全册数学试题_第3页
3/31
专题40抛物线1.掌握抛物线的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率)。2.理解数形结合的思想。3.了解抛物线的实际背景及抛物线的简单应用。热点题型一抛物线的定义及标准方程例1、【2017课标II,理16】已知是抛物线的焦点,是上一点,的延长线交轴于点。若为的中点,则。【答案】6【解析】如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.【变式探究】(1)已知点M(3,2),F为抛物线y2=2x的焦点,点P在该抛物线上移动,当|PM|+|PF|取最小值时,点P的坐标为________。(2)已知抛物线y2=2px,以过焦点的弦为直径的圆与抛物线准线的位置关系是()A.相离B.相交C.相切D.不确定解析:(1)如下图,由定义知|PF|=|PE|,故|PM|+|PF|=|PM|+|PE|≥|ME|≥|MN|=3。显然,只有当点P在由点M向准线所作的垂线上时,距离之和最小,此时点P的坐标为(2,2)。【提分秘籍】与抛物线有关的最值问题的解题策略该类问题一般情况下都与抛物线的定义有关。实现由点到点的距离与点到直线的距离的转化。(1)将抛物线上的点到准线的距离转化为该点到焦点的距离,构造出“两点之间线段最短”,使问题得解。(2)将抛物线上的点到焦点的距离转化为到准线的距离,利用“与直线上所有点的连线中垂线段最短”原理解决。(3)引入变量,建立目标函数,利用不等式或者函数性质求解。【举一反三】已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,|AF|=x0,则x0=()A.1B.2C.4D.8解析:由题意知抛物线的准线为x=-。因为|AF|=x0,根据抛物线的定义可得x0+=|AF|=x0,解得x0=1,故选A。答案:A热点题型二抛物线的几何性质例2、【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.10【答案】A【解析】设,直线的方程为,联立方程,得,∴,同理直线与抛物线的交点满足,由抛物线定义可知,当且仅当(或)时,取等号.【变式探究】(1)已知双曲线-=1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为,则p=()A.1B.C.2D.3(2)已知抛物线C:y2=8x的焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点.若FP=4FQ,则|QF|=()A.B.C.3D.2【提分秘籍】1.涉及抛物线几何性质的问题常结合图形思考,通过图形可以直观地看出抛物线的顶点、对称轴、开口方向等几何特征,体现了数形结合思想解题的直观性。2.求抛物线方程应注意的问题(1)当坐标系已建立时,应根据条件确定抛物线方程属于四种类型中的哪一种;(2)要注意把握抛物线的顶点、对称轴、开口方向与方程之间的对应关系;(3)要注意参数p的几何意义是焦点到准线的距离,利用它的几何意义来解决问题。【举一反三】从抛物线x2=4y上一点P引抛物线准线的垂线,垂足为M,且|PM|=5,设抛物线的焦点为F,则△MPF的面积为________。解析:设P(x0,y0)。由题意知,抛物线的准线方程为y=-1,|PM|=|PF|=5,∴y0=4,代入抛物线方程得|x0|=4。∴S△MPF=|PM|·|x0|=×5×4=10。答案:10热点题型三直线与抛物线的位置关系例3.【2017北京,理18】已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP,ON交于点A,B,其中O为原点.(Ⅰ)求抛物线C的方程,并求其焦点坐标和准线方程;(Ⅱ)求证:A为线段BM的中点.【答案】(Ⅰ)方程为,抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)详见解析.【解析】(Ⅰ)由抛物线C:过点P(1,1),得.所以抛物线C的方程为.抛物线C的焦点坐标为(,0),准线方程为.(Ⅱ)由题意,设直线l的方程为(),l与抛物线C的交点为,.由,得.则,.因为点P的坐标为(1,1),所以直线OP的方程为,点A的坐标为.直线ON的方程为,点B的坐标为.因为,所以.故A为线段BM的中点.【变式探究】已知过抛物线y2=2px(p>0)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学 专题40 抛物线热点题型和提分秘籍 理-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部