专题六函数的奇偶性与周期性【高频考点解读】从近几年的高考试题来看,函数的奇偶性、周期性是高考命题的热点.主要是奇偶性与单调性的小综合,周期性的考查常以利用周期性求函数值,以选择题、填空题的形式出现,这部分知识对学生要求很高,属中低档题.1.结合具体函数,了解函数奇偶性的含义.2.会运用函数的图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.【热点题型】题型一函数奇偶性的判定例1、判断下列各函数的奇偶性:(1)f(x)=lgx2+lg;(2)f(x)=(x-1);(3)f(x)=;(4)f(x)=.(4)易知f(x)的定义域是(-1,0)∪(0,1), f(x)=-,f(-x)=-f(x).【提分秘籍】(1)利用定义判断函数奇偶性的步骤:(2)分段函数奇偶性的判断,要注意定义域内x取值的任意性,应分段讨论,讨论时可依据x的范围取相应的解析式化简,判断f(x)与f(-x)的关系,得出结论,也可以利用图象作判断.【举一反三】判断下列函数的奇偶性:(1)f(x)=;(2)f(x)=x2-|x-a|+2.因此f(x)既不是偶函数也不是奇函数.【热点题型】题型二函数奇偶性的应用(1)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2-x,则f(1)=()A.-3B.-1C.1D.3(2)若函数f(x)=为奇函数,则a=()A.B.C.D.1(3)已知偶函数f(x)在区间[0∞,+)上单调递增,则满足f(2x-)<f()的x的取值范围是()A.(∞-,0)B.(0,)C.(0,2)D.(∞,+)【提分秘籍】根据函数的奇偶性,讨论函数的单调区间是常用的方法.奇函数在对称区间上的单调性相同;偶函数在对称区间上的单调性相反.所以对具有奇偶性的函数的单调性的研究,只需研究对称区间上的单调性即可.【举一反三】在本例(1)中的条件下,求f(x)在R上的解析式.解:当x>0时,-x<0,又x≤0时,f(x)=2x2-x,∴f(-x)=2(-x)2-(-x)=2x2+x,又f(-x)=-f(x),即:-f(x)=2x2+x,∴f(x)=-2x2-x.综上,f(x)=.【热点题型】题型三函数的周期性例3、设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2.(1)求证:f(x)是周期函数;(2)当x∈[2,4]时,求f(x)的解析式.【提分秘籍】1.深化奇函数和偶函数的定义(1)定义域在数轴上关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.在利用定义时,可应用定义的等价形式:f(-x)=±f(x)⇔f(-x)±f(x)=0⇔=±1(f(x)≠0).2.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.3.若对于函数f(x)的定义域内任一个自变量的值x都有f(x+a)=-f(x)或f(x+a)=或f(x+a)=-(a是常数且a≠0),则f(x)是一个周期为2a的周期函数.4.函数的周期性反映了函数在整个定义域上的性质.对函数周期性的考查,主要涉及函数周期性的判断,利用函数周期性求值,以及解决与周期有关的函数综合问题.解决此类问题的关键是充分利用题目提供的信息,找到函数的周期,利用周期在有定义的范围上进行求解.【举一反三】已知函数f(x)是(∞∞-,+)上的偶函数,若对于x≥0,都有f(x+2)=-f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f()+f(-)的值为()A.-2B.-1C.1D.2【热点题型】题型四利用奇偶性破解函数的最值例4、设函数f(x)=的最大值为M,最小值为m,则M+m=________.【提分秘籍】本题看似复杂,其实并不难,破解本题的关键就是把函数f(x)=的解析式分解成1+g(x),其次利用奇函数的图象关于原点对称这一性质得出g(x)max+g(x)min=0,突出转化思想,问题得到圆满解决.【举一反三】已知y=f(x)是奇函数.若g(x)=f(x)+2且g(1)=1,则g(-1)=________.【高考风向标】1.(·福建卷)已知函数f(x)=则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[-1∞,+)2.(·湖南卷)已知f(x),g(x)分别是定义在R上的偶函数和奇函数,且f(x)-g(x)=x3+x2+1,则f(1)+g(1)=()A.-3B.-1C.1D.33.C【解析】因为f(x)是偶函数,g(x)是奇函数,所以f(1)+g(1)...