电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

【数学】132“杨辉三角”与二项式系数的性质课件(人教A版选修2-3)VIP免费

【数学】132“杨辉三角”与二项式系数的性质课件(人教A版选修2-3)_第1页
1/27
【数学】132“杨辉三角”与二项式系数的性质课件(人教A版选修2-3)_第2页
2/27
【数学】132“杨辉三角”与二项式系数的性质课件(人教A版选修2-3)_第3页
3/27
第一章计数原理1.3.2“杨辉三角”与二项式系数的性质一般地,对于nN*有011222()nnnnnnnrnrrnnnnabCaCabCabCabCb二项定理:一、新课引入二项展开式中的二项式系数指的是那些?共有多少个?下面我们来研究二项式系数有些什么性质?我们先通过杨辉三角观察n为特殊值时,二项式系数有什么特点?杨辉三角杨辉三角《九章算术》杨辉杨辉三角杨辉三角《详解九章算法》中记载的表1.“杨辉三角”的来历及规律杨辉三角杨辉三角展开式中的二项式系数,当时,如下表所示:nba)(111211331146411510105116152015611)(ba2)(ba3)(ba4)(ba5)(ba6)(ba第5行1551第0行1杨辉三角杨辉三角杨辉三角杨辉三角第1行11第2行121第3行1331第4行141第6行161561第n-1行111nC121nC11rnCrnC121nnC第n行11nC12nC1nnC………………………………1515=5+102020=10+1010=6+41010=6+41066=3+34=1+340)(ba1)(ba2)(ba3)(ba4)(ba5)(ba6)(banba)(rnrnrnCCC111rnC125第5行15101051第6行1615201561第7行172135352171第1行11第0行1第2行121第3行1331第4行14641……138132134如图,写出斜线上各行数字的和,有什么规律?第8行18285670562881从第三个数起,任一数都等于前两个数的从第三个数起,任一数都等于前两个数的和和;;这就是著名的这就是著名的斐波那契数列。。类似上面的表,早在我国南宋数学家杨辉1261年所著的《详解九章算法》一书里就已经出现了,这个表称为杨辉三角。在书中,还说明了表里“一”以外的每一个数都等于它肩上两个数的和,杨辉指出这个方法出于《释锁》算书,且我国北宋数学家贾宪(约公元11世纪)已经用过它。这表明我国发现这个表不晚于11世纪。在欧洲,这个表被认为是法国数学家帕斯卡(1623-1662)首先发现的,他们把这个表叫做帕斯卡三角。这就是说,杨辉三角的发现要比欧洲早五百年左右,由此可见我国古代数学的成就是非常值得中华民族自豪的.二项式系数的性质二项式系数的性质展开式的二项式系数依次是:nba)(nnnnnC,,C,C,C210从函数角度看,可看成是以r为自变量的函数,其定义域是:rnC)(rfn,,2,1,0当时,其图象是右图中的7个孤立点.6n二项式系数的性质二项式系数的性质2.二项式系数的性质(1)对称性与首末两端“等距离”的两个二项式系数相等.这一性质可直接由公式得到.mnnmnCC图象的对称轴:2nr二项式系数的性质二项式系数的性质(2)增减性与最大值kknkkknnnnknkn1C)!1()1()2)(1(C1由于:所以相对于的增减情况由决定.knC1Cknkkn1二项式系数的性质二项式系数的性质(2)增减性与最大值由:2111nkkkn二项式系数是逐渐增大的,由对称性可知它的后半部分是逐渐减小的,且中间项取得最大值。21nk可知,当时,二项式系数的性质二项式系数的性质(2)增减性与最大值因此,当n为偶数时,中间一项的二项式2Cnn系数取得最大值;当n为奇数时,中间两项的二项式系数、21Cnn21Cnn相等,且同时取得最大值。(3)各二项式系数的和二项式系数的性质二项式系数的性质在二项式定理中,令,则:1bannnnnn2CCCC210这就是说,的展开式的各二项式系数的和等于:nba)(n2同时由于,上式还可以写成:1C0n12CCCC321nnnnnn这是组合总数公式.一般地,展开式的二项式系数有如下性质:nba)((1)nnnnCCC,,10mnnmnCC(2)(3)当时,(4)mnmnmnCCC1121nr1rnrnCC当时,21nrrnrnCC1nnnnnCCC210例题分析:例1.证明:(1)(a+b)n的展开式中,各二项式系数的和启示:在二项式定理中a,b可以取任意实数,因此我们可以通过对a,b赋予一些特定的值,是解决二项式有关问题的一种重要方法——赋值法。0122rnnnnnnnCCCCC令a=b=1,则0122nrnnnnnnCCCCC继续思考1:(2)试证明在(a+b)n的展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和.即证:021312nnnnnCCCC证明:在展开式中令a=1,b=-1得011nnnnnnnCaCabCb01...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

【数学】132“杨辉三角”与二项式系数的性质课件(人教A版选修2-3)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部