2015-2016学年山东省泰安市新泰一中高三(上)第一次质检数学试卷(文科)一、选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集U={1,2,3,4,5,6},集合M={2,3,5},N={4,5},则∁U(M∪N)等于()A.{1,3,5}B.{2,4,6}C.{1,5}D.{1,6}2.下列四个函数中,在区间(0,1)上是减函数的是()A.y=log2xB.y=C.y=﹣D.y=3.已知命题P:∀x∈R,x>sinx,则P的否定形式为()A.¬P:∃x∈R,x≤sinxB.¬P:∀x∈R,x≤sinxC.¬P:∃x∈R,x<sinxD.¬P:∀x∈R,x<sinx4.要得到y=sin2x+cos2x的图象,只需将y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位5.函数f(x)=log22x与在同一直角坐标系下的图象大致是()A.B.C.D.6.若对∀a∈(﹣∞,0),∃x0∈R,使acosx0≤a成立,则=()A.B.C.D.7.函数f(x)=﹣cosx在[0,+∞)内()A.没有零点B.有且仅有一个零点C.有且仅有两个零点D.有无穷多个零点8.同时具有性质“①最小正周期是π,②图象关于直线对称;③在上是增函数”的一个函数是()A.B.C.D.9.设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=x•f′(x)的图象的一部分,则f(x)的极大值与极小值分别是()A.f(1)与f(﹣1)B.f(﹣1)与f(1)C.f(﹣2)与f(2)D.f(2)与f(﹣2)10.若定义在R上的二次函数f(x)=ax2﹣4ax+b在区间[0,2]上是增函数,且f(m)≥f(0),则实数m的取值范围是()A.0≤m≤4B.0≤m≤2C.m≤0D.m≤0或m≥411.若对任意的x∈R,函数f(x)满足f(x+2012)=﹣f(x+2011),且f(2012)=﹣2012,则f(﹣1)=()A.1B.﹣1C.2012D.﹣201212.定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣(x﹣3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于()A.1B.2C.1或2D.4或2二、填空题:(本大题共有4个小题,每小题4分,共计16分)13.已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<)的部分图象如图所示,则f(x)的解析式是.14.当x=3时,不等式loga(x2﹣x﹣2)>loga(4x﹣6)(a>0且a≠1)成立,则此不等式的解集是.15.在△ABC中,AC=,BC=2,B=60°,则∠A=,AB=.16.已知函数f(x)=x3+ax2+bx+c(x∈[﹣2,2])的图象过原点,且在x=±1处的切线的倾斜角均为,现有以下三个命题:①f(x)=x3﹣4x(x∈[﹣2,2]);②f(x)的极值点有且只有一个;③f(x)的最大值与最小值之和为零.其中真命题的序号是.三、解答题:(本大题共6小题,74分.解答应写出文字、说明、证明过程或演算步骤.)17.已知命题a2x2+ax﹣2=0在[﹣1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p”或“q”是假命题,求a的取值范围.18.设△ABC的内角A,B,C的对边分别是a,b,c,且A=60°,c=3b,(1)求的值;(2)求的值.19.某投资公司计划投资A、B两种金融产品,根据市场调查与预测,A产品的利润y与投资量x成正比例,其关系如图1,B产品的利润y与投资量x的算术平方根成正比例,其关系如图2,(注:利润与投资量单位:万元)(1)分别将A、B两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入A、B两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?20.已知函数f(x)=sin2x﹣cos2x﹣,x∈R,(1)求函数f(x)的最小值和最小正周期;(2)求函数在[﹣,]上的最大值和最小值.21.已知函数f(x)=1﹣2ax﹣a2x(0<a<1)(1)求函数f(x)的值域;(2)若x∈[﹣2,1]时,函数f(x)的最小值为﹣7,求a的值和函数f(x)的最大值.22.已知函数f(x)=x3﹣ax2﹣3x(1)若f(x)在区间上[1,+∞)是增函数,求实数a的取值范围;(2)若x=﹣是f(x)的极值点,求f(x)在[﹣1,a]上的最大值和最小值.2015-2016学年山东省泰安市新泰一中高三(上)第一次质检数学试卷(文科)参考答案与试题解析一、选...