课时跟踪检测(八)“专题二”补短增分(综合练)A组——易错清零练1.(2018·湖北八校联考)已知等比数列{an}的前n项和为Sn,S10=10,S30=130,则S40=()A.-510B.400C.400或-510D.30或40解析:选B等比数列{an}中,S10,S20-S10,S30-S20,S40-S30成等比数列,且由题意知,S20>0,所以S10(S30-S20)=(S20-S10)2,即10(130-S20)=(S20-10)2,解得S20=40,又(S20-S10)(S40-S30)=(S30-S20)2,即30(S40-130)=902,解得S40=400.2.在数列{an}中,a1=1,a2=2,an+2-an=1+(-1)n,那么S100的值为()A.2500B.2600C.2700D.2800解析:选B当n为奇数时,an+2-an=0⇒an=1,当n为偶数时,an+2-an=2⇒an=n,故an=于是S100=50+=2600.3.(2018·海淀二模)在数列{an}中,“an=2an-1,n=2,3,4,…”是“{an}是公比为2的等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选B当an=0时,也有an=2an-1,n=2,3,4,…,但{an}不是等比数列,因此充分性不成立;当{an}是公比为2的等比数列时,有=2,n=2,3,4,…,即an=2an-1,n=2,3,4,…,所以必要性成立.4.已知数列{an}的前n项和为Sn=n2+1,数列{bn}满足bn=,则bn=________.解析:当n=1时,a1=S1=2,因为Sn=n2+1,Sn-1=(n-1)2+1(n≥2),两式相减得an=Sn-Sn-1=2n-1(n≥2),所以当n≥2时,an=2n-1,又a1=2不符合上式,所以an=因为bn=,所以bn=答案:5.(2018·安徽阜阳一中月考)已知一个等比数列{an}的前4项之积为,第2,3项的和为,则数列{an}的公比q=________.解析:设数列{an}的前4项分别为a,aq,aq2,aq3,则可得所以(1+q)4=64q2,即(1+q)2=±8q,当q>0时,可得q2-6q+1=0,解得q=3±2,当q<0时,可得q2+10q+1=0,解得q=-5±2.综上,q=3±2或q=-5±2.答案:3±2或-5±2B组——方法技巧练1.已知正项数列{an}中,a1=1,且(n+2)a-(n+1)a+anan+1=0,则它的通项公式为()A.an=B.an=C.an=D.an=n解析:选B因为(n+2)a-(n+1)a+anan+1=0,所以[(n+2)an+1-(n+1)an](an+1+an)=0.又{an}为正项数列,所以(n+2)an+1-(n+1)an=0,即=,则an=··…··a1=··…··1=.故选B.2.(2018·郑州质检)已知数列{an}满足a1a2a3…an=2n2(n∈N*),且对任意n∈N*都有++…+