1/17第1节变化率与导数、导数的计算考试要求1.通过实例分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道导数是关于瞬时变化率的数学表达,体会导数的内涵与思想;2.体会极限思想;3.通过函数图象直观理解导数的几何意义;4.能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1x,y=x的导数;5.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能求简单的复合函数(限于形如f(ax+b))的导数;6.会使用导数公式表.知识梳理1.函数y=f(x)在x=x0处的导数(1)定义:称函数y=f(x)在x=x0处的瞬时变化率f(x0+Δx)-f(x0)Δx=ΔyΔx为函数y=f(x)在x=x0处的导数,记作f′(x0)或y′|x=x0,即f′(x0)=ΔyΔx=f(x0+Δx)-f(x0)Δx.(2)几何意义:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点(x0,f(x0))处的切线的斜率.相应地,切线方程为y-y0=f′(x0)(x-x0).2.函数y=f(x)的导函数如果函数y=f(x)在开区间(a,b)内的每一点处都有导数,当x=x0时,f′(x0)是一个确定的数,当x变化时,f′(x)便是x的一个函数,称它为f(x)的导函数(简称导数),y=f(x)的导函数有时也记作y′,即f′(x)=y′=f(x+Δx)-f(x)Δx.2/173.基本初等函数的导数公式基本初等函数导函数f(x)=c(c为常数)f′(x)=0f(x)=xα(α∈Q*)f′(x)=αxα-1f(x)=sinxf′(x)=cos__xf(x)=cosxf′(x)=-sin__xf(x)=exf′(x)=exf(x)=ax(a>0,a≠1)f′(x)=axln__af(x)=lnxf′(x)=1xf(x)=logax(a>0,a≠1)f′(x)=1xlna4.导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)f(x)g(x)′=f′(x)g(x)-f(x)g′(x)[g(x)]2(g(x)≠0).5.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为yx′=yu′·ux′.[常用结论与微点提醒]1.f′(x0)代表函数f(x)在x=x0处的导数值;(f(x0))′是函数值f(x0)的导数,且(f(x0))′=0.2.1f(x)′=-f′(x)[f(x)]2(f(x)≠0).3.曲线的切线与曲线的公共点的个数不一定只有一个,而直线与二次曲线相切只有一个公共点.4.函数y=f(x)的导数f′(x)反映了函数f(x)的瞬时变化趋势,其正负号反映了变化的方向,其大小|f′(x)|反映了变化的快慢,|f′(x)|越大,曲线在这点处的切线越“陡”.3/17诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.()(2)函数f(x)=sin(-x)的导数f′(x)=cosx.()(3)求f′(x0)时,可先求f(x0),再求f′(x0).()(4)曲线y=f(x)在某点处的切线与曲线y=f(x)过某点的切线意义是相同的.()解析(1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错.(2)f(x)=sin(-x)=-sinx,则f′(x)=-cosx,(2)错.(3)求f′(x0)时,应先求f′(x),再代入求值,(3)错.(4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方程组的思想求切线的方程,曲线上某点处的切线只有一条,但过某点的切线可以不止一条,(4)错.答案(1)×(2)×(3)×(4)×2.(老教材选修2-2P19B2改编)已知函数f(x)=xx+2,则函数在x=-1处的切线方程是()A.2x-y+1=0B.x-2y+2=0C.2x-y-1=0D.x+2y-2=0解析由f(x)=xx+2,得f′(x)=2(x+2)2,又f(-1)=-1,f′(-1)=2.因此函数在x=-1处的切线方程为y+1=2(x+1),即2x-y+1=0.答案A3.(多填题)(老教材选修2-2P3问题2改编)在高台跳水运动中,ts时运动员相对于水面的高度(单位:m)是h(t)=-4.9t2+6.5t+10,则运动员的速度v=________m/s,加速4/17度a=________m/s2.解析v=h′(t)=-9.8t+6.5,a=v′(t)=-9.8.答案-9.8t+6.5-9.84.(2019·全国Ⅱ卷)曲线y=2sinx+cosx在点(π,-1)处的切线方程为()A.x-y-π-1=0B.2x-y-2π-1=0C.2x+y-2π+1=0D.x+y-π+1=0解析设y=f(x)=2sinx+cosx,则f′(x)=2cosx-sinx,∴曲线在点(π,-1)处的切线斜率k=f...