课时作业5函数与方程及函数的应用时间:45分钟A级—基础必做题一、选择题1.(2014·北京卷)已知函数f(x)=-log2x,在下列区间中,包含f(x)零点的区间是()A.(0,1)B.(1,2)C.(2,4)D.(4,+∞)解析:由题意知,函数f(x)在(0,+∞)上为减函数,又f(1)=6-0=6>0,f(2)=3-1=2>0,f(4)=-log24=-2=-<0,由零点存在性定理,可知函数f(x)在区间(2,4)上必存在零点.答案:C2.若关于x的方程x2+mx+1=0有两个不相等的实数根,则实数m的取值范围是()A.(-1,1)B.(-2,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-1)∪(1,+∞)解析: 方程x2+mx+1=0有两个不相等的实根,∴Δ=m2-4>0.∴m2>4,即m>2或m<-2.答案:C3.(2014·湖北卷)已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-3x,则函数g(x)=f(x)-x+3的零点的集合为()A.{1,3}B.{-3,-1,1,3}C.{2-,1,3}D.{-2-,1,3}解析:求出当x<0时f(x)的解析式,分类讨论解方程即可.令x<0,则-x>0,所以f(-x)=(-x)2+3x=x2+3x.因为f(x)是定义在R上的奇函数,所以f(-x)=-f(x).所以当x<0时,f(x)=-x2-3x.所以当x≥0时,g(x)=x2-4x+3.令g(x)=0,即x2-4x+3=0,解得x=1或x=3.当x<0时,g(x)=-x2-4x+3.令g(x)=0,即x2+4x-3=0,解得x=-2+>0(舍去)或x=-2-.所以函数g(x)有三个零点,故其集合为{-2-,1,3}.答案:D4.某人想开一家服装专卖店,经过预算,该门面需要门面装修费为20000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R与门面经营天数x的关系式是R=则总利润最大时,该门面经营的天数是()A.100B.150C.200D.300解析:由题意,知总成本C=20000+100x.所以总利润P=R-C=即P′=令P′=0,得x=300,易知当x=300时,总利润最大.答案:D5.已知函数f(x)=(k∈R),若函数y=|f(x)|+k有三个零点,则实数k的取值范围是()A.k≤2B.-1
1,即a>,故实数a的取值范围是0,f=-3-1<0,f·f(2)<0,故下一步可断定该根在区间内.答案:8.(2014·福建卷)函数f(x)=的零点个数是________.解析:分段函数分别在每一段上判断零点个数,单调函数的零点至多有一个.当x≤0时,令x2-2=0,解得x=-(正根舍去),所以在(-∞,0]上有一个零点.当x>0时,f′(x)=2+>0恒成立,所以f(x)在(0,+∞)上是增函数.又因为f(2)=-2+ln2<0,f(3)=ln3>0,f(2)·f(3)<0,所以f(x)在(2,3)内有一个零点.综上,函数f(x)的零点个数为2.答案:29.已知f(x)=|x|+|x-1|,若g(x)=f(x)-a的零点个数不为0,则a的最小值为________.解析:g(x)的零点个数不为零,即f(x)图象与直线y=a的交点个数不为零,画出f(x)的图象可知,a的最小值为1.答案:1三、解答题10.已知函数f(x)=2x,g(x)=+2.(1)求函数g(x)的值域;(2)求满足方程f(x)-g(x)=0的x的值.解:(1)g(x)=+2=|x|+2,因为|x|≥0,所以0<|x|≤1,即20时,由2x--2=0,整理得(2x)2-2·2x-1=0,(2x-1)2=2,故2x=1±,因为2x>0,所以2x=1+,即x...