一元二次方程--分解因式法【学习目标】1、能根据具体一元二次方程的特征,灵活选择方程的解法。体会解决问题方法的多样性。2、会用分解因式(提公因式法、公式法)解某些简单的数字系数的一元二次方程。3、会根据题目的特点灵活的选择各种方法解一元二次方程。【知识要点】1、分解因式法解一元二次方程:当一元二次方程的一边为0,而另一边易于分解成两个一次因式的积时,可用解两个一元一次方程的方法来求得一元二次方程的解,这种解一元二次方程的方法称为分解因式法。2、分解因式法的理论依据是:若0ba,则0a或0b3、用分解因式法解一元二次方程的一般步骤:①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,他们的解就是一元一次方程的解。【典型例题】例1、(1)方程)2(2)2)(1(xxx的根是__________(2)方程0)3)(2)(1(xxx的根是__________(7)0625412xx(8)(x-1)2-4(x-1)-21=0.例3、2-3是方程x2+bx-1=0的一个根,则b=_________,另一个根是_________.例4、已知a2-5ab+6b2=0,则abba等于()21331D.231321C.231B.321A.2或或例5、解关于x的方程:(a2-b2)x2+4abx=a2-b2.例6、x为何值时,等式0232222xxxx【经典练习】:一、填空题1、用因式分解法解方程9=x2-2x+1(1)移项得;(2)方程左边化为两个数的平方差,右边为0得;(3)将方程左边分解成两个一次因式之积得;(4)分别解这两个一次方程得x1=,x2=。2、(1)方程t(t+3)=28的解为_______.(2)方程(2x+1)2+3(2x+1)=0的解为__________.3、(1)用因式分解法解方程5(x+3)-2x(x+3)=0,可把其化为两个一元一次方程和求解。(2)方程x2-16=0,可将方程左边因式分解得方程__________,则有两个一元一次方程____________或____________,分别解得:x1=_______,x2=________.4、如果方程x2-3x+c=0有一个根为1,那么c=,该方程的另一根为,该方程可化为(x-1)(x)=05、已知x2-7xy+12y2=0,那么x与y的关系是_________.6、小英、小华一起分苹果,小华说:“我分得苹果数是你的3倍。”小英说:“如果将我的苹果数平方恰好等于你所得的苹果数。”则小英、小华分得的苹果个数分别是。二、选择题1、方程3x2=1的解为()A.±31B.±3C.31D.±332、2x(5x-4)=0的解是()A.x1=2,x2=54B.x1=0,x2=45C.x1=0,x2=54D.x1=21,x2=543、下列方程中适合用因式分解法解的是()A.x2+x+1=0B.2x2-3x+5=0C.x2+(1+2)x+2=0D.x2+6x+7=04、若代数式x2+5x+6与-x+1的值相等,则x的值为()A.x1=-1,x2=-5B.x1=-6,x2=1C.x1=-2,x2=-3D.x=-15、已知y=6x2-5x+1,若y≠0,则x的取值情况是()A.x≠61且x≠1B.x≠21C.x≠31D.x≠21且x≠316、方程2x(x+3)=5(x+3)的根是()A.x=25B.x=-3或x=25C.x=-3D.x=-25或x=37、用因式分解法解方程,下列方法中正确的是A.(2x-2)(3x-4)=0∴2-2x=0或3x-4=0B.(x+3)(x-1)=1∴x+3=0或x-1=1C.(x-2)(x-3)=2×3∴x-2=2或x-3=3D.x(x+2)=0∴x+2=08、方程ax(x-b)+(b-x)=0的根是A.x1=b,x2=aB.x1=b,x2=a1C.x1=a,x2=b1D.x1=a2,x2=b29、若一元二次方程(m-2)x2+3(m2+15)x+m2-4=0的常数项是0,则m为()A.2B.±2C.-2D.-10三、解下列关于x的方程(1)x2+12x=0;(2)4x2-1=0;(3)(x-1)(x+3)=12;(4)x2-4x-21=0;(5)3x2+2x-1=0;(6)10x2-x-3=0;(7)4(3x+1)2-9=0(8)5(2x-1)=(1-2x)(x+3)【课后作业】一、选择题1、已知方程4x2-3x=0,下列说法正确的是()A.只有一个根x=43B.只有一个根x=0C.有两个根x1=0,x2=43D.有两个根x1=0,x2=-435、方程(y-5)(y+2)=1的根为()A.y1=5,y2=-2B.y=5C.y=-2D.以上答案都不对二、用因式分解法解下列方程:(1)t(2t-1)=3(2t-1);(2)y2+7y+6=0;(3)y2-15=2y(4)(2x-1)(x-1)=1.