山东省宁津县2018届九年级数学上学期第一次月考试题一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填在答题卡内相应的位置上.1、用配方法解下列方程,配方正确的是()A.2y2﹣4y﹣4=0可化为(y﹣1)2=4B.x2﹣2x﹣9=0可化为(x﹣1)2=8C.x2+8x﹣9=0可化为(x+4)2=16D.x2﹣4x=0可化为(x﹣2)2=42、关于x的一元二次方程(m﹣2)x2+5x+m2﹣2m=0的常数项为0,则m的值为()A.1B.2C.1或2D.03、把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为()A.y=2(x+3)2+4B.y=2(x+3)2﹣4C.y=2(x﹣3)2﹣4D.y=2(x﹣3)2+44、某种商品经过连续两次涨价后的价格比原来上涨了44%,则这种商品的价格的平均增长率是()A.44%B.22%C.20%D.18%5、已知抛物线y=ax2+bx,当a>0,b<0时,它的图象经过()A.一,二,三象限B.一,二,四象限C.一,三,四象限D.一,二,三,四象限6、在同一直角坐标系中,一次函数y=ax+c和二次函数y=ax2+c的图象大致为()A.B.C.D.7、若关于x的方程kx2﹣2x﹣1=0有实数根,则k的取值范围是()A.k>﹣1B.k>﹣1且k≠0C.k<1D.k<1且k≠08、已知α,β是方程x2+2006x+1=0的两个根,则(1+2008α+α2)(1+2008β+β2)的值为().A.1B.2C.3D.49、已知(x2+y2+1)(x2+y2+3)=8,则x2+y2的值为().A.-5或1B.1C.5D.5或-110、如果抛物线y=x2﹣6x+c﹣2的顶点到x轴的距离是3,那么c的值等于()A.8B.14C.8或14D.﹣8或﹣1411、对称轴平行于y轴的抛物线的顶点为点(2,3)且抛物线经过点(3,1),那么抛物线解析式是()A.y=﹣2x2+8x+3B.y=﹣2x-2﹣8x+3C.y=﹣2x2+8x﹣5D.y=﹣2x-2﹣8x+212、若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如下,则a的值为()A.﹣2B.﹣C.1D.二、填空题:本大题共5小题,每小题5分,共25分,请把答案填写在答题卡上的横线上.13、如图所示,在同一平面直角坐标系中,作出①y=﹣3x2,②y=﹣,③y=﹣x2的图象,则从里到外的三条抛物线对应的函数依次是(填序号)14、方程x2+6x+3=0的两个实数根为x1,x2,则+=________.15、已知三角形的两边长分别是4和7,第三边是方程x2﹣16x+55=0的根,则第三边长是16、二次函数y=x2﹣2x的图象上有A(x1,y1)、B(x2,y2)两点,若1<x1<x2,则y1与y2的大小关系是17、如图,抛物线y=ax2+bx+c(a>0)的对称轴是直线x=1,且经过点P(3,0),则a﹣b+c的值为.三、解答题:本大题共8小题,满分77分.解答过程写在答题卡上,解答应写出文字说明、演算步骤或推理过程.18、(8分)解方程(1)4x2﹣6x﹣3=0(2)(2x﹣3)2=5(2x﹣3)13题图17题图19、(6分)求证:方程074)1(3222mmxmx对于任何实数m,永远有两个不相等的实数根;20、{6分}已知二次函数y=ax2+b的图象与直线y=x+2相交于点A(1,m)和点B(n,0).(1)试确定二次函数的解析式;(2)在给出的平面直角坐标系中画出这个函数图象的草图,并结合图象直接写出ax2+b>x+2时x的取值范围.21、(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?22、(10分)已知关于x的方程a2x2+(2a-1)x+1=0有两个不相等的实数根x1,x2.(1)求a的取值范围;(2)是否存在实数a,使方程的两个实数根互为相反数?如果存在,求出a的值;如果不存在,说明理由.23、(12分)一座拱桥的轮廓是抛物线型(如图1所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图2所示),其表达式是y=ax2+c的形式.请根据所给的数据求出a,c的值.(2)求支柱MN的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.24、(12分)某商场老板对一种新上市商品的销售情况进行记录,已知这种商品进价为每件40元,经过记录分析发现,当销售单价在40元至90元之间(...