备课:第(12)周星期(1)教出:第(12)周星期3)总第(55)课时24.2与圆有关的位置关系(2)(第二课时)教学目标:1.了解直线和圆的位置关系的有关概念.2.理解设⊙O的半径为r,直线l到圆心O的距离为d,则有:直线与⊙O的位置关系跟d、r的密切关系.3.理解切线的判定定理;理解切线的性质定理并熟练掌握以上内容解决一些实际问题.通过复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r得出直线和圆相切,讲授切线的判定定理和性质定理.重点、难点、关键:1.重点:切线的判定定理;切线的性质定理及运用它们解决一些具体的问题.2.难点与关键:由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价.教学过程:一、复习引入点和圆的位置关系,如何用数量关系描述?二、探索新知前面我们讲了点和圆有这样的位置关系,如果这个点P改为直线l呢?它是否和圆还有这三种的关系呢?(学生活动)固定一个圆,把三角尺的边缘运动,如果把这个边缘看成一条直线,那这条直线和圆有几种位置关系?(提问,学生口答并板书)直线和圆有三种位置关系:相交、相切和相离.直线l和圆有两个公共点,这时我们就说这条直线和圆相交,这条直线叫做圆的割线.直线和圆有一个公共点,这时我们说这条直线和圆相切,这条直线叫做圆的切线,这个点叫做切点.直线和圆没有公共点,这时我们说这条直线和圆相离.我们知道,点到直线L的距离是过这点向直线L作垂线,这点到垂足D的距离,按照这个定义,作出圆心O到直线L的距离的三种情况?(学生分组活动):设d=r关系,总结出什么结论?因为d=r;直线L和⊙O相切,这里的d是圆心O到直线L的距离,即垂直距离,并由d=r就可得到国L经过半径r的外端,即半径OA的A点,因此,很明显的,我们可以得到切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.I(学生分组讨论):根据上面的判定定理,如果你要证明一条直线是⊙O的切线,你应该如何证明?(点评):应分为两步:(1)说明这个点是圆上的点,(2)过这点的半径垂直于直线.例1.如图,已知Rt△ABC的斜边AB=8cm,AC=4cm.(1)以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为什么?(2)以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?分析:(1)根据切线的判定定理可知,要使直线AB与⊙C相切,那这条半径应垂直于直维新学校备课:第(12)周星期(1)教出:第(12)周星期3)总第(55)课时线AB,并且C点到垂足的长就是半径,所以只要求出如图所示的CD即可.(2)用d和r的关系进行判定,或借助图形进行判定.反之,如果知道这条直线是切线呢?有什∠性质定理呢?实际上,如图,CD是切线,A是切点,连结AO交⊙O于B,那AB是对称轴,所以沿AB对折图形时,AC与AD重合,因此,∠BAC=∠BAD=90°.因此,我们有切线的性质定理:圆的切线垂直于经过切点的半径。三、巩固练习教材P102练习,Pl03练习.四、归纳小结(学生归纳,总结发言点评)本节课应掌握:1.直线和圆相交、割线、直线和圆相切,切线、切点、直线和圆相离等概念.2.直线和圆的三种位置关系如何判断?有何数量关系?3.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.4.切线的性质定理,圆的切线垂直于过切点的半径.5.应用上面的知识解决实际问题.五、布置作业:教材P110复习巩固2、3、4、5.维新学校