11.3多边形的内角和教案一.教学目标(一)知识与技能1.掌握多边形的内角和与外角和定理.2.进一步了解转化的数学思想.(二)过程与方法1.经历猜想、类比、推理等数学活动,探究多边形内角和的公式,发展学生的合情推理能力,积累数学活动的经验.2.经历把多边形转化成三角形,体会从具体到抽象、化繁为简、化未知为已知等转化的思想方法在数学中的应用.(三)情感、态度与价值观通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动充满了探索性与创造性,激发学生乐于探究的热情.二.学情分析这节课是在学生学习了三角形这种特殊的多边形的相关内容以及多边形的定义之后安排的一节课,学生已经掌握了三角形和特殊的四边形(如长方形、正方形)内角和问题,对特殊的多边形内角和的问题已经有了一定的认识.三.教学重点从不同的角度寻求多边形内角和公式及外角和定理.四.教学难点1.探索多边形内角和时,如何把多边形转化成三角形.2.从运动的观点上理解多边形的外角和定理.五.教学方法引导学生体验探索、归纳图形性质的推理方法.把多边形的有关问题转化为三角形的问题进行研究,体现数学的转化思想.通过对生活中数学问题的探究,进一步提高学生学数学、用数学的意识,在自主探究、合作交流的过程中,体会数学的重要作用,感受数学活动充满了探索性与创造性,激发学生乐于探究的热情.六.教学过程(一)引入新课教师活动:画出多边形中从一个顶点出发的对角线,写出它的条数.(PPT展示)你能写出每个图形中对角线的总条数吗?如果不能,请画出所有对角线.(PPT展示)学生活动:思考回答.教师活动:对学生的回答做出总结.提问:从n边形的一个顶点出发能画出多少条对角线?你能告诉我二十边形的对角线的总条数吗?五十边形呢?一百边形呢?n边形呢?是不是太难了。学生活动:猜测,讨论.(二)进行新课1.探索多边形的内角和教师活动:指导学生进行课本探究.探究如下:我们知道,三角形的内角和等于180;正方形、长方形的内角和都等于360.那么,任意一个四边形的内角和是否也等于360呢?你能利用三角形内角和定理证明四边形的内角和等于360吗?学生活动:动手画图并用量角器进行测量.教师活动:在探究四边形的内角和时,有的同学不是用量角器度量、计算得到,而是按照课本图如下图所示,利用辅助线将四边形分割成两个三角形的方法,利用三角形内角和等于180,得到四边形内角和等于360.你能说明它的合理性吗?并且启发你能否借助辅助线找到不同的分割方法呢?学生活动:展开小组讨论,各抒己见并展示成果.如上图,在四边形ABCD中,连接对角线AC,则四边形ABCD被分为两个三角形.所以,四边形ABCD的内角和=ABC的内角和+ACD的内角和=180180360.教师活动应重点关注:(1)学生能否借助辅助线把四边形分割成几个三角形;(2)学生能否借助辅助线找到不同的分割方法;(3)学生能否在小组活动中与他人交流思考过程;(4)学生能否积极地参加小组活动.2.探索五边形、六边形及十边形的内角和学生活动:独立完成课本填空,然后小组交流.课本填空如下:观察上图,填空:(1)从五边形的一个顶点出发,可以引条对角线,它们将五边形分为个三角形,五边形的内角和等于180.(2、3、3)(2)从六边形的一个顶点出发,可以引条对角线,它们将六边形分为个三角形,六边形的内角和等于180.(3、4、4)通过以上过程,你能发现多边形的内角和与边数的关系吗?(3)从n边形的一个顶点出发,可以引条对角线,它们将n边形分为个三角形,n边形的内角和等于180.(n-3、n-2、n-2)从而我们可以得出多边形内角和公式:n边形内角和等于(2)180n.3.探索任意多边形的内角和学生活动:在独立思考的基础上,展开小组交流讨论,再进行全班交流.师生共同利用在探究上述多边形内角何时得到的规律,可得n边形的内角和等于(2)180n.4.多边形内角和的应用学生自学课本例1和例2.独立思考完成,然后小组交流达成共识.例1:如果一个四边形的一组对角互补...