电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

不等式及其基本性质VIP免费

不等式及其基本性质_第1页
1/18
不等式及其基本性质_第2页
2/18
不等式及其基本性质_第3页
3/18
“<”(或“≤”),“>”(或“≥”)1、不等式2、理解关键词意义非负数不小于不大于非正数至少(最少)不超过><<1、用“>”或“<”填空:(1)4-6(2)-10(3)-8-31、观察下面这几个式子,完成下面的填空。ba 33ba∴)2()2(22yxbyxa∴同一个数同一个整式等式的两边都加上(或减去)或,所得的结果仍是等式。等式的基本性质1:2、继续观察下面这几个式子,完成下面的填空。ba ba33∴44ba∴同一个数等式的两边都乘以(或除以)(除数不能为零),所得的结果仍是等式。等式的基本性质2:那么不等式有没有类似的性质呢?不等式两边都加上(或减去)同一个数不等号方向是否改变了7>47+5>4+5-3<4-3-7<4-7………不等式的性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。ba如果,那么cacb<没有改变没有改变你发现了什么?完成下列填空:2<32X5____3X52<32X.05____3X0.52<32X(-1)____3X(-1)2<32X(-5)____3X(-5)2<32X(-0.5)_____3X(-0.5)你发现了什么?<<>>>做一做同乘正数同乘负数P7-8不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;如果a>b,c<0,那么acb,c>0,那么ac>bc不等式性质3不等式性质2cbcacbca口诀:负见乘除方向变1、如果x+5>4,那么两边都可得x>-12、在-7<8的两边都加上9可得。3、在5>-2的两边都减去6可得。4、在-3>-4的两边都乘以7可得。5、在-8<0的两边都除以8可得。减去52<17-1>-8-21>-28-1<0ba1、在不等式-8<0的两边都除以-8可得。2、在不等式-3x<3的两边都除以-3可得。3、在不等式-3>-4的两边都乘以-3可得。4、在不等式的两边都乘以-1可得。ba1>01x9<12>>><ba如果,那么:①②③④3a3ba2b2a3b3ba0(不等式性质)(不等式性质)(不等式性质)(不等式性质)1231例1根据不等式的基本性质,把下列不等式化成x<或x>的形式:(1)x-5>-1(2)-2x>3(3)x>5(4)-4x<3-x21aa③④同学回答解(1)根据不等式的性质1,两边都加上5得:x-5+5>-1+5即x>4(2)根据不等式的性质3,两边都除以-2得:即x<-23①不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;②不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边都乘以(或除以)同一个负数,不等号的方向要改变;本节重点(1)掌握不等式的三条性质,尤其是性质3;(2)能正确应用性质对不等式进行变形;练习1,将下列不等式化成“x>a”或“x-1(2)-2x>3解:(1)根据不等式的基本性质1,两边都加上5,得x>-1+5即x>4(2)根据不等式的基本性质3,两边都除以-2,得-2x÷(-2)<3÷(-2)即x<32练习2,若a-b<0,则下列各式中一定成立的是()A.a>bB.ab>0C.D.-a>-b例3,若x是任意实数,则下列不等式中,恒成立的是()A.3x>2xB.3x2>2x2C.3+x>2D.3+x2>20abDD练习3:(1)由xmy的条件是()A.m≥0B.m≤0C.m>0D.m<0(2)若mx1,则应为()A.m<0B.m>0C.m≤0D.m≥0(3)若m是有理数,则-7m与3m的大小关系应是()A.-7m<3mB.-7m>3mC.-7m≤3mD.不能确定DAD比较2a与a的大小(1)当a>0时,2a>a;(2)当a=0时,2a=a;(3)当a<0时,2a0,则acbc(或)cabc<>>知识形成知识形成不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.若a0,则acbc(或)ca>bc(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

不等式及其基本性质

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部