读一读我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦.图1-1称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图1-2是在北京召开的2002年国际数学家大会(TCM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.图1-1图1-2►活动1知识准备1.下列长度的三条线段中,能组成三角形的是()A.3cm,5cm,8cmB.8cm,8cm,18cmC.0.1cm,0.1cm,0.1cmD.3cm,40cm,8cmC2.在直角三角形ABC中,若∠C=90°,∠A=28°,则∠B=___________.62°如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?5米BAC12米一、情景引入电线杆折断之前的高度=BC+AB=5米+AB的长图甲图乙A的面积B的面积C的面积448ABCSA+SB=SCC图甲1.观察图甲,小方格的边长为1.⑴正方形A、B、C的面积各为多少?⑵正方形A、B、C的面积有什么关系?ABCC图乙2.观察图乙,小方格的边长为1.⑴正方形A、B、C的面积各为多少?91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲图甲图乙A的面积B的面积C的面积ABC图乙2.观察图乙,小方格的边长为1.91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲图甲图乙A的面积B的面积C的面积abcabcABCC图乙SA+SB=SCSA+SB=SC图甲abcabc3.猜想a、b、c之间的关系?a2+b2=c2概括对于任意的直角三角形,如果它的两条直角边分别为a、b,斜边为c,那么一定有a2+b2=c2直角三角形两直角边的平方和等于斜边的平方.揭示了直角三角形三条边的关系aABCbc几何语言: 在RtABC△中∠C=90°(已知)∴a2+b2=c2(勾股定理)勾股定理:∟两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。勾股定理的几种证明cab1、拿出准备好的四个全等的直角三角形(设直角三角形的两条直角边分别为a,b,斜边c);2、你能用这四个直角三角形拼成一个正方形吗?拼一拼试试看3、你拼的正方形中是否含有以斜边c的正方形?4、你能否就你拼出的图说明a2+b2=c2?cabcabcabcab c2==b2-2ab+a2+2ab=a2+b2∴a2+b2=c2证明:大正方形的面积可以表示为;也可以表示为c2该图2002年8月在北京召开的国际数学家大会的会标示意图,取材于我国古代数学著作《勾股圆方图》。abab214)(2证明1:证明1:abab214)(2cabcabcabcab (a+b)2=a2+2ab+b2=2ab+c2∴a2+b2=c2大正方形的面积可以表示为;也可以表示为(a+b)224abC2证明2:证明2:24abC2abcbac¡ßSÌÝÐÎABCD=12a+b2=12(a2+2ab+b2)ÓÖ¡ßSÌÝÐÎABCD=SAED+SEBC+SCED=12ab+12ba+12c2=12(2ab+c2)±È½ÏÉÏÃæ¶þʽµÃc2=a2+b2ABCDE•1881年,伽菲尔德就任美国第二十任总统.后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统证法”.证明3:证明3:你能只用这两个直角三角形说明a2+b2=c2吗?勾股勾股弦我国早在三千多年就知道了这个定理,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为“股”,我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.因此就把这一定理称为勾股定理.我国早在三千多年就知道了这个定理,人们把弯曲成直角的手臂的上半部分称为“...