电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

日常生活中的概率问题-(3)VIP免费

日常生活中的概率问题-(3)_第1页
1/1
一名优秀的数学家=十个师在第二次世界大战中,盟军为了和德国法本斯作战,大量军需物品要穿过大西洋运送到各个战场。可是在1934年以前,负责运送物资的英美船队常常受到德国潜艇的袭击,损失惨重。当时英美两国限于实力,无力增派更多的护航舰,一时间德军的“潜艇战”搞得盟军焦头烂额,海上运输成了令人头疼的问题。在这进退两难之际,有位美国海军将领专门去请教了几位数学家。数学家运用概率论分析后发现,运输舰队与敌军潜艇相遇是一个随机事件,即船队是否被袭击,取决于航行过程中是否与敌潜艇相遇,而与敌潜艇是有可能发生,又有可能不发生的。从数学角度来看这一问题,它具有一定的规律。1.一定数量的船只,编队规模越小,批次就越多;批次越多,与敌潜艇相遇的概率就越大。比如,5位同学放学后各自回到自己的家里,老师要找一位同学,随便去哪一位同学家都行。但若这5位同学都集中在其中某一位同学家里,老师可能要找几家才能找到他们,一次找到的可能性只有五分之一,即20%。2.一旦与敌潜艇相遇,船队的规模越小,每艘船被击中的可能性就越大。这是因为德军潜艇的数量与船队的数量相比总是少的,潜艇所载弹药有限,每次袭击,不论船队规模多大,被击沉的数目基本相等。假如运输船的总量为100艘,按每队20艘船编队,就要编成5队;而按每队10艘船编队,就要编成10队。两种编队方式与敌潜艇相遇的可能性之比为5:10,即1:2。假设每次遭到敌潜艇袭击损失5艘运输船,那么,上述两种编队方式中每艘船被击中的可能性之比为5/20:5/10=1:2。两者结合起来看,两种编队方式中每艘运输船与敌潜艇相遇并被击沉的可能性之比为1:4。这说明,100艘运输船,编成5队比编成10队的危险性小。美国海军接受了数学家的建议,改进了运输船由各个港口分散启航的做法,命令船队在指定海域集合,再集体通过危险海区,然后各自驶向预定港口。奇迹出现了,盟军船队遭袭击被击沉的概率由原来的25%降低为1%,大大减少了损失,保证了战略物资的供应。于是,美国军方宣称:一名优秀数学家的作用,超过十个师的兵力!

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

日常生活中的概率问题-(3)

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部