必考问题8数列的综合应用返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛抓住命题方向返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛1.(2010·江苏,8)函数y=x2(x>0)的图象在点(ak,a2k)处的切线与x轴交点的横坐标为ak+1,k为正整数,a1=16,则a1+a3+a5=________.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛2.(2011·湖北)《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛法二设自上第一节竹子容量为a1,依次类推,数列{an}为等差数列.又a1+a2+a3+a4=4a1+6d=3,a7+a8+a9=3a1+21d=4.解得a1=1322,d=766,∴a5=a1+4d=1322+4×766=6766.答案6766返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛4.(2012·苏锡常镇调研)设u(n)表示正整数n的个位数,an=u(n2)-u(n),则数列{an}的前2012项和等于________.解析由题意可知,数列{an}的项为:0,2,6,2,0,0,2,-4,-8,0,0,2,6,2,……,是以10为周期的周期数列,且一个周期内的10项的和为0,故S2012=a1+a2=2.答案2返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛5.(2012·苏中三市调研)已知正方体C1的棱长为182,以C1各个面的中心为顶点的凸多面体为C2,以C2各个面的中心为顶点的凸多面体为C3,以C3各个面的中心为顶点的凸多面体为C4,依次类推.记凸多面体Cn的棱长为an,则a6=________.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛解析正方体的各面中心构成正八面体,棱长是正方体棱长的22倍,正八面体的各面中心构成正方体,棱长为正八面体的23倍,因为a1=182,所以a2=18,a3=62,a4=6,a5=22,a6=2.答案2返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛【高考定位】高考对本内容的考查主要有:(1)通过适当的代数变形后,转化为等差数列或等比数列的问题.(2)求数列的通项公式及其前n项和的基本的几种方法.(3)数列与函数、不等式的综合问题.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛【应对策略】能够掌握有关数列问题的基本代数变换方法以及求数列的通项公式、前n项和的基本方法,此外,还要注意到数列与函数、不等式等知识的联系.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛必备知识方法返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛必备知识1.数列求和的一般方法数列求和的方法主要有错位相减法、倒序相加法、公式法、拆项并项法、裂项相消法等.2.数列的应用题(1)应用问题一般文字叙述较长,反映的事物背景陌生,知识涉及面广,因此要解好应用题,首先应当提高阅读理解能力,将普通语言转化为数学语言或数学符号,实际问题转化为数学问题,然后再用数学运算、数学推理予以解决.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛(2)数列应用题一般是等比、等差数列问题,其中,等比数列涉及的范围比较广,如经济上涉及利润、成本、效益的增减,解决该类题的关键是建立一个数列模型{an},利用该数列的通项公式、递推公式或前n项和公式.返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师叮咛必备方法1.数列求和的方法归纳(1)转化法:将数列的项进行分组重组,使之转化为n个等差数列或等比数列,然后应用公式求和;(2)错位相减法:适用于{an·bn}的前n项和,其中{an}是等差数列,{bn}是等比数列;(3)裂项法:求{an}的前n项和时,若能将an拆分为an=bn-bn+1,则a1+a2+…+an=b1-bn+1;返回返回上页上页下页下页抓住命题方向必备知识方法热点命题角度阅卷老师...