第2讲数列求和及数列的综合应用(建议用时:60分钟)一、选择题1.(2014·福建卷)等差数列{an}的前n项和为Sn,若a1=2,S3=12,则a6等于().A.8B.10C.12D.14解析利用等差数列的通项公式和前n项和公式求解.由题意知a1=2,由S3=3a1+×d=12,解得d=2,所以a6=a1+5d=2+5×2=12,故选C.答案C2.数列{an}的通项公式an=,若{an}的前n项和为24,则n为().A.25B.576C.624D.625解析an==-(-),前n项和Sn=-[(1-)+(-)+…+(-)]=-1=24,故n=624.故选C.答案C3.(2015·浙江卷)已知{an}是等差数列,公差d不为零,前n项和是Sn,若a3,a4,a8成等比数列,则().A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0解析 a3,a4,a8成等比数列,∴(a1+3d)2=(a1+2d)·(a1+7d),整理得a1=-d,∴a1d=-d2<0,又S4=4a1+d=-,∴dS4=-<0,故选B.答案B4.设{an}是公差不为0的等差数列,a1=2且a1,a3,a6成等比数列,则{an}的前n项和Sn=().A.+B.+C.+D.n2+n解析设等差数列{an}的公差为d,由已知得a=a1a6,即(2+2d)2=2(2+5d),解得d=,故Sn=2n+×=+.答案A5.(2015·北京卷)设{an}是等差数列,下列结论中正确的是().A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2>D.若a1<0,则(a2-a1)(a2-a3)>0解析A,B选项易举反例,C中若0<a1<a2,∴a3>a2>a1>0, a1+a3>2,又2a2=a1+a3,∴2a2>2,即a2>成立.答案C6.Sn是等比数列{an}的前n项和,a1=,9S3=S6,设Tn=a1a2a3…an,则使Tn取最小值的n值为().A.3B.4C.5D.61解析设等比数列的公比为q,故由9S3=S6,得9×=,解得q=2,故=an=×2n-1,易得当n≤5时,<1,即TnTn-1,据此数列单调性可得T5为最小值.答案C7.已知数列{an}的通项公式是an=-n2+12n-32,其前n项和是Sn,对任意的m,n∈N*且m0,Sn随n的增加而增大,S7=S8,当n>8时,an<0,Sn随n的增加而减小,故Sn-Sm≤S8-S4=a5+a6+a7+a8=a5+a6+a7=10.答案D二、填空题8.设公比为q(q>0)的等比数列{an}的前n项和为Sn,若S2=3a2+2,S4=3a4+2,则q=________.解析由已知得②-①得a1q2+a1q3=3a1q(q2-1),即2q2-q-3=0.解得q=或q=-1(舍).答案9.在正项数列{an}中,a1=2,an+1=2an+3×5n,则数列{an}的通项公式为________.解析在递推公式an+1=2an+3×5n的两边同时除以5n+1,得=×+,①令=bn,则①式变为bn+1=bn+,即bn+1-1=(bn-1),所以数列{bn-1}是等比数列,其首项为b1-1=-1=-,公比为.所以bn-1=×n-1,即bn=1-×n-1=,故an=5n-3×2n-1.答案an=5n-3×2n-110.(2015·江苏卷)设数列{an}满足a1=1,且an+1-an=n+1(n∈N*),则数列前10项的和为________.解析 a1=1,an+1-an=n+1,∴a2-a1=2,a3-a2=3,…,an-an-1=n,将以上n-1个式子相加得an-a1=2+3+…+n=,即an=,令bn=,故bn==2,故S10=b1+b2+…+b10=2=.答案11.设y=f(x)是一次函数,f(0)=1,且f(1),f(4),f(13)成等比数列,则f(2)+f(4)+…+f(2n)=________.解析设f(x)=kx+b(k≠0),又f(0)=1,所以b=1,即f(x)=kx+1(k≠0).由f(1),f(4),f(13)成等比数列,得f2(4)=f(1)·f(13),即(4k+1)2=(k+1)(13k+1).因为k≠0,所以k=2,所以f(x)=2x+1,所以f(2)+f(4)+…+f(2n)=5+9+…+4n+1==n(2n+3).答案n(2n+3)12.(2015·新课标全国Ⅱ卷)设Sn是数列{an}的前n项和,且a1=-1,an+1=SnSn+1,则Sn=____________.解析由题意,得S1=a1=-1,又由an+1=SnSn+1,得Sn+1-Sn=SnSn+1,所以Sn≠0,所以=1,即-=-1,故数列是以=-1为首项,-1为公差的等差数列,得=-1-(n-1)=-n,所以Sn=-.答案-2三、解答题13.(2015·山东卷)设数列{an}的前n项和为Sn.已知2Sn=3n+3.(1)求{an}的通项公式;(2)若数列{bn}满足an...