高二年级下学期5月月考数学试题(范围:排列组合、二项式定理)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试用时120分钟.第Ⅰ卷(选择题,共60分)一、选择题:每小题5分,共60分,在每小题给出的四个选项中,只有一个选项是正确的,请把正确地选项填在题后的括号内.1.用1、2、3、4四个数字组成含有重复数字的四位数,其个数是()A.265个B.232个C.128个D.24个2.电话号码盘上有10个号码,采用八位号码制比采用七位号码制可多装机的门数是()A.B.C-CC.D.3.设k=1,2,3,4,5,则(x+2)5的展开式中xk的系数不可能是()A.10B.40C.50D.804.有A、B、C、D、E共5人并排站在一起,如果A、B必须相邻,并在B在A的右边,那么不同的排法有()A.60种B.48种C.36种D.24种5.4名学生报名参加语、数、英兴趣小组,每人选报1种,则不同方法有()A.43种B.34种C.种D.种6.在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数()A.74B.121C.-74D.-1217.6个人排成一排,其中甲、乙两人中间至少有一人的排法有()A.480种B.720种C.240种D.360种8.5个身高不等的学生站成一排合影,从中间到两边一个比一个矮的排法有()A.6种B.8种C.10种D.12种9.从1、2、3、4、5这五个数字中任取3个组成无重复数字的三位数,当三个数字有2和3时,则2需排在3的前面(不一定相邻),这样的三位数有()A.9个B.15个C.45个D.51个10.AB和CD为平面内两条相交直线,AB上有m个点,CD上有n个点,且两直线上各有一个与交点重合,则以这m+n-1个点为顶点的三角形的个数是()A.B.C.D.11.如图,用5种不同颜色给图中标有1、2、3、4各部分涂色,每部分只涂一种颜色,且相邻两部分涂不同颜色.则不同的涂色方法共有()1A.160种B.240种C.260种D.360种12.体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元.某人想从01至10中选3个连续的号,从11至20中选2个连续的号,从21至30中选1个号,从31至36中选1个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360元B.6720元C.4320元D.8640元第Ⅱ卷(非选择题,共90分)二、填空题:每小题5分,共20分,把正确答案填写在题中的横线上,或按题目要求作答.13.以正三棱柱的顶点为顶点的四面体共有____________个.14.若,则的值为_______.15.从10件产品(其中含2件次品)中任取5件,其中含有次品的抽法有种.16.一电路图如图所示,从A到B共有条不同的线路可通电.三、解答题:共70分.要求写出必要的文字说明、重要演算步骤,有数值计算的要明确写出数值和单位,只有最终结果的不得分.17.(本题满分10分)平面上有9个点,其中4个点在同一条直线上,此外任三点不共线.(1)过每两点连线,可得几条直线?(2)以每三点为顶点作三角形可作几个?(3)以一点为端点作过另一点的射线,这样的射线可作出几条?(4)分别以其中两点为起点和终点,最多可作出几个向量?18.(本题满分12分)20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.19.(本题满分12分)某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴中任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需准备不同的素菜品种多少种?111120.(本题满分12分)一个口袋内装有4个不同的红球,6个不同的白球,若取出一个红球记2分,取出一个白球记1分,从口袋中取5个球,使总分不小于7分的取法有多少种?21.(本题满分12分)集合A与B各有12个元素,集合有4个元素,集合C满足条件:(i);(ii)C中含有3个元素;(iii).这样的集合C共有多少个?22.(本题满分12分)规定,其中x∈R,m是正整数,且,这是组合数(n、m是正整数,且m≤n)的一种推广.(1)求的值;(2)设x>0,当x为何值时,取得最小值?(3)组合数的两个性质;①.②.是否都能推广到(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.数学参考答案一、选择题1.B2.C3.C4.D5.B6.D7.A8.A9.D10.D...