电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课标)广西高考数学二轮复习 专题对点练17 空间中的垂直、夹角及几何体的体积-人教版高三全册数学试题VIP免费

(新课标)广西高考数学二轮复习 专题对点练17 空间中的垂直、夹角及几何体的体积-人教版高三全册数学试题_第1页
1/8
(新课标)广西高考数学二轮复习 专题对点练17 空间中的垂直、夹角及几何体的体积-人教版高三全册数学试题_第2页
2/8
(新课标)广西高考数学二轮复习 专题对点练17 空间中的垂直、夹角及几何体的体积-人教版高三全册数学试题_第3页
3/8
专题对点练17空间中的垂直、夹角及几何体的体积1.(2018江苏,15)在平行六面体ABCD-A1B1C1D1中,AA1=AB,AB1⊥B1C1.求证:(1)AB∥平面A1B1C;(2)平面ABB1A1⊥平面A1BC.2.如图,在三棱台ABC-DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.3.由四棱柱ABCD-A1B1C1D1截去三棱锥C1-B1CD1后得到的几何体如图所示.四边形ABCD为正方形,O为AC与BD的交点,E为AD的中点,A1E⊥平面ABCD.(1)证明:A1O∥平面B1CD1;(2)设M是OD的中点,证明:平面A1EM⊥平面B1CD1.4.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,△PAD是等边三角形,已知BD=2AD=8,AB=2DC=4❑√5.(1)设M是PC上的一点,证明:平面MBD⊥平面PAD;(2)求四棱锥P-ABCD的体积.5.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠ADC=45°,AD=AC=2,O为AC的中点,PO⊥平面ABCD,且PO=6,M为PD的中点.(1)证明:AD⊥平面PAC;(2)求直线AM与平面ABCD所成角的正切值.6.(2018北京,文18)如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.求证:(1)PE⊥BC;(2)平面PAB⊥平面PCD;(3)EF∥平面PCD.7.如图①,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2,AD=6,CE⊥AD于点E,把△DEC沿CE折到D'EC的位置,使D'A=2❑√3,如图②.若G,H分别为D'B,D'E的中点.(1)求证:GH⊥D'A;(2)求三棱锥C-D'BE的体积.8.如图,在四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC=2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求四棱锥S-ABCD的高.专题对点练17答案1.证明(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.2.(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解因为BF⊥平面ACK,所以∠BDF是直线BD与平面ACFD所成的角.在Rt△BFD中,BF=❑√3,DF=32,得cos∠BDF=❑√217,所以,直线BD与平面ACFD所成角的余弦值为❑√217.3.证明(1)取B1D1的中点O1,连接CO1,A1O1,由于ABCD-A1B1C1D1是四棱柱,所以A1O1∥OC,A1O1=OC,因此四边形A1OCO1为平行四边形,所以A1O∥O1C.又O1C⊂平面B1CD1,A1O⊄平面B1CD1,所以A1O∥平面B1CD1.(2)因为AC⊥BD,E,M分别为AD和OD的中点,所以EM⊥BD,又A1E⊥平面ABCD,BD⊂平面ABCD,所以A1E⊥BD,因为B1D1∥BD,所以EM⊥B1D1,A1E⊥B1D1.又A1E,EM⊂平面A1EM,A1E∩EM=E,所以B1D1⊥平面A1EM,又B1D1⊂平面B1CD1,所以平面A1EM⊥平面B1CD1.4.(1)证明在△ABD中,因为AD=4,BD=8,AB=4❑√5,所以AD2+BD2=AB2.所以AD⊥BD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,BD⊂平面ABCD,所以BD⊥平面PAD.又BD⊂平面MBD,故平面MBD⊥平面PAD.(2)解过点P作PO⊥AD交AD于点O,因为平面PAD⊥平面ABCD,所以PO⊥平面ABCD,所以PO为四棱锥P-ABCD的高.又△PAD是边长为4的等边三角形,因此PO=❑√32×4=2❑√3.在底面四边形ABCD中,AB∥DC,AB=2DC,所以四边形ABCD是梯形.在Rt△ADB中,斜边AB边上的高为4×84❑√5=8❑√55,此即为梯形ABCD的高,所以四边形ABCD的面积为S=2❑√5+4❑√52×8❑√55=24.故VP-ABCD=13×24×2❑√3=16❑√3.5.(1)证明 PO⊥平面ABCD,且AD⊂平面ABCD,∴PO⊥AD. ∠ADC=45°,且AD=AC=2,∴∠ACD=45°,∴∠DAC=90°,∴AD⊥AC. AC⊂平面PAC,PO⊂平面PAC,且AC∩PO=O,∴AD⊥平面PAC.(2)解取DO的中点N,连接MN,AN,由PO⊥平面ABCD,得MN⊥平面ABCD,∴∠MAN是直线AM与平面ABCD所成的角. M为PD的中点,∴MN∥PO,且MN=12PO=3,AN=12DO=❑√52.在Rt△ANM中,tan∠MAN=MNAN=3❑√52=6❑√55,即直线AM与平面ABCD所成角的正切值为6❑√55.6.证明(1) PA=PD,且E为AD的中点,∴PE⊥AD. 底面ABCD为矩形,∴BC∥AD,∴PE⊥BC.(2) 底面ABC...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课标)广西高考数学二轮复习 专题对点练17 空间中的垂直、夹角及几何体的体积-人教版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部