中国教育学会中学数学教学专业委员会“《数学周报》杯”2010年全国初中数学竞赛试题一、选择题(共5小题,每小题7分,共35分.其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里,不填、多填或错填都得0分)1.若2010abbc,,则abbc的值为().(A)1121(B)2111(C)11021(D)21011解:D由题设得12012101111110aabbcbcb.2.若实数a,b满足21202aabb,则a的取值范围是().(A)a≤2(B)a≥4(C)a≤2或a≥4(D)2≤a≤4解.C因为b是实数,所以关于b的一元二次方程21202baba的判别式21()41(2)2aa=≥0,解得a≤2或a≥4.3.如图,在四边形ABCD中,∠B=135°,∠C=120°,AB=23,BC=422,CD=42,则AD边的长为().(A)26(B)64(C)64(D)622解:D如图,过点A,D分别作AE,DF垂直于直线BC,垂足分别为E,F.由已知可得(第3题)BE=AE=6,CF=22,DF=26,于是EF=4+6.过点A作AG⊥DF,垂足为G.在Rt△ADG中,根据勾股定理得AD222(46)(6)(224)=226.4.在一列数123xxx,,,……中,已知11x,且当k≥2时,1121444kkkkxx(取整符号a表示不超过实数a的最大整数,例如2.62,0.20),则2010x等于().(A)1(B)2(C)3(D)4解:B由11x和1121444kkkkxx可得11x,22x,33x,44x,51x,62x,73x,84x,……因为2010=4×502+2,所以2010x=2.5.如图,在平面直角坐标系xOy中,等腰梯形ABCD的顶点坐标分别为A(1,1),B(2,-1),C(-2,-1),D(-1,1).y轴上一点P(0,2)绕点A旋转180°得点P1,点P1绕点B旋转180°得点P2,点P2绕点C旋转180°得点P3,点P3绕点D旋转180°得点P4,……,重复操作依次得到点P1,P2,…,则点P2010的坐标是().(A)(2010,2)(B)(2010,2)(第3题)(第5题)(C)(2012,2)(D)(0,2)解:B由已知可以得到,点1P,2P的坐标分别为(2,0),(2,2).记222)Pab(,,其中222,2ab.根据对称关系,依次可以求得:322(42)Pab,--,422(2)Pab,4,522(2)Pab,,622(4)Pab,.令662(,)Pab,同样可以求得,点10P的坐标为(624,ab),即10P(2242,ab),由于2010=4502+2,所以点2010P的坐标为(2010,2).二、填空题6.已知a=5-1,则2a3+7a2-2a-12的值等于.解:0由已知得(a+1)2=5,所以a2+2a=4,于是2a3+7a2-2a-12=2a3+4a2+3a2-2a-12=3a2+6a-12=0.7.一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行驶.在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间.过了10分钟,小轿车追上了货车;又过了5分钟,小轿车追上了客车;再过t分钟,货车追上了客车,则t=.解:15设在某一时刻,货车与客车、小轿车的距离均为S千米,小轿车、货车、客车的速度分别为abc,,(千米/分),并设货车经x分钟追上客车,由题意得10abS,①152acS,②xbcS.③由①②,得30bcS(),所以,x=30.故3010515t(分).8.如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是.解:11133yx+如图,延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线l把矩形ABFO分成面积相等的两部分.又因为点N(5,2)是矩形CDEF的中心,所以,过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.于是,直线MN即为所求的直线l.设直线l的函数表达式为ykxb,则2352kbkb+,,解得1311.3kb,,故所求直线l的函数表达式为11133yx+.9.如图,射线AM,BN都垂直于线段AB,点E为AM上一点,过点A作BE的...