集合论的诞生与发展集合论作为数学中最富创造性的伟大成果之一,是在19世纪末由德国的康托尔(1845-1918)创立起来的。但是,它萌发、孕育的历史却源远流长,至少可以追溯到两千多年前。(一)早期研究集合论是关于无穷集合和超穷数的数学理论。集合作为数学中最原始的概念之一,通常是指按照某种特征或规律结合起来的事物的总体。例如美国国会图书馆的全部藏书,自然数的全体以及直线上所有点的总体等等。集合论的全部历史都是围绕无穷集合而展开的。早在集合论创立之前两千多年,数学家和哲学家们就已经接触到了大量有关无穷的问题,古希腊的学者最先注意并考察了它们。公元前5世纪,埃利亚学派的芝诺(约公元前490-前430),一共提出45个悖论,其中关于运动的四个悖论:二分法悖论、阿基里斯追龟悖论、飞矢不动悖论与运动场悖论尤为著名,前三个悖论都与无穷直接有关。芝诺在悖论中虽然没有明确使用无穷集合的概念,但问题的实质却与无穷集合有关。在数理哲学中,有两种无穷方式历来为数学家和哲学家所关注,一种是无穷过程,称为潜在无穷,一种是无穷整体,称为实在无穷。希腊哲学家亚里士多德(前384-前322)最先提出要把潜在的无穷和实在的无穷加以区别,这种思想在当今仍有重要意义。他认为只存在潜在无穷,如地球的年龄是潜在无穷,但任意时刻都不是实在无穷。他承认正整数是潜在无穷的,因为任何正整数加上1总能得到一个新数。对他来说,无穷集合是不存在的。哲学权威亚里士多德把无穷限于潜在无穷之内,如同下了一道禁令,谁敢冒天下之大不韪,以至于影响对无穷集合的研究达两千多年之久。公元5世纪,拜占庭的普罗克拉斯(410-485)是欧几里德《几何原本》的著名评述者。他在研究直径分圆问题时,注意到圆的一根直径分圆成两个半圆,由于直径有无穷多,所以必须有两倍无穷多的半圆。为了解释这个在许多人看来是一个矛盾的问题,他指出:任何人只能说有很大很大数目的直径或者半圆,而不能说一个实实在在无穷多的直径或者半圆,也就是说,无穷只能是一种观念,而不是一个数,不能参与运算。其实,他这里是接受了亚里士多德的潜无穷的概念,而否认实无穷的概念,对这种对应关系采用了回避的态度。到了中世纪,随着无穷集合的不断出现,部分能够同整体构成一一对应这个事实也就越来越明显地暴露出来。例如,数学家们注意到把两个同心圆上的点用公共半径联结起来,就构成两个圆上的点之间的一一对应关系。近代科学的开拓者伽利略(1564-1642)注意到:两个不等长的线段上的点可以构成一一对应他又注意到:正整数与它们的平方可以构成一一对应这说明无穷大有不同的“数量级”,不过伽利略认为这是不可能的。他说,所有无穷大量都一样,不能比较大小。(二)奠定基础到了十七世纪,数学家把无穷小量引进数学,构成所谓“无穷小演算”,这就是微积分的最早名称。所谓积分法无非是无穷多个无穷小量加在一起,而微分法则是两个无穷小量相除。由于无穷小量运算的引进,无穷大模大样地进入数学,虽然它给数学带来前所未有的繁荣和进步,它的基础及其合法性仍然受到许多数学家的质疑,他们对无穷仍然心存疑虑,这方面以“数学家之王”高斯(1777—1855)的意见为代表。高斯是一个潜在无穷论者,他在1831年7月12日给他的朋友舒马赫尔的信中说“我必须最最强烈地反对你把无穷作为一完成的东西来使用,因为这在数学中是从来不允许的。无穷只不过是一种谈话方式,它是指一种极限,某些比值可以任意地逼近它,而另一些则容许没有限制地增加。”这里极限概念只不过是一种潜在的无穷过程。这里高斯反对那些哪怕是偶尔用一些无穷的概念,甚至是无穷的记号的人,特别是当他们把它当成是普通数一样来考虑时。法国大数学家柯西(1789-1857)也同他的前人一样,不承认无穷集合的存在。他认为部分同整体构成一一对应是自相矛盾的事。科学家们接触到无穷,却又无力去把握和认识它,这的确是向人类提出的尖锐挑战。正如大卫•希尔伯特(1862-1943)在他的1926年《论无穷》的讲演中所说的那样:“没有任何问题象无穷那样深深地触动人的情感,很少别的观念能象无穷那样激励理智产生富有成果的思...