电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

《鸽巢问题》教案 人教版VIP免费

《鸽巢问题》教案 人教版_第1页
1/7
《鸽巢问题》教案 人教版_第2页
2/7
《鸽巢问题》教案 人教版_第3页
3/7
教学目教具学鸽巢问题教材第68、第69页。1.在了解简单的“鸽巢问题”的基础上,使学生会用此原理解决简单的实际问题。2.提高学生有根据、有条理地进行思考和推理的能力。3.通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理铅笔、笔筒、书等。师:同学们,老师给大家表演一个“魔术”。一副牌,取出大小王,还剩52张牌,请5个同学上来,每人随意抽一张,我知道至少有2人抽到的是同花色的,相信吗?试一试。师生共同玩几次这个“小魔术”,验证一下。师:想知道这是为什么吗?通过今天的学习,你就能解释这个现象了。下面我们就来研究这类问题,我们先从简单的情况入手研究。设计意图:紧紧扣住学生的好奇心,从学生喜欢的扑克牌“小魔术”开始,激活认知热情。使学生积极投入到对问题的研究中。同时,渗透研究问题的方法和建模的数学思想】探究体验,经历过程1.讲授例1。(1)认识“抽屉原理”。(课件出示例题)把4支铅笔放进3个笔筒中,那么总有一个笔筒里至少放进2支铅笔。学生读一读上面的例题,想一想并说一说这个例题中说了一件怎样的事。教师指出:上面这个问题,同学们不难想出其中的道理,但要完全清楚地说明白,就需给出证明。(2)学生分小组活动进行证明活动要求:①学生先独立思考。②把自己的想法和小组内的同学交流。③如果需要动手操作,要分工并全面考虑问题。(谁分铅笔、谁当笔筒即“抽屉”、谁记录等)④在全班交流汇报。(3)汇报。师:哪个小组愿意说说你们是怎样证明的?①列举法证明。学生证明后,教师提问:把4支铅笔放进3个笔筒里,共有几种不同的放法?(共有4种不同的放法。在这里只考虑存在性问题,即把4支铅笔不管放进哪个笔筒,都视为同一种情况)根据以上4种不同的放法,你能得出什么结论?(总有一个至少放进2支铅笔)②数的分解法证明。可以把4分解成三个数,共有四种情况:(4,0,0),(3,1,0),(2,2,0),(2,1,1),每一种结果的三个数中,至少有一个数是不小于2的。③反证法(或假设法)证明。让学生试着说一说,教师适时指点:假设先在每个笔筒里放1支铅笔。那么,3个笔筒里就放了3支铅笔。还剩下1支铅笔,放进任意一个笔筒里,那么这个笔筒里就有2支铅笔。(4)揭示规律。请同学们继续思考:①把5支铅笔放进4个笔筒中,那么总有一个笔筒里至少放进几支铅笔,为什么?②如果把6支铅笔放进5个笔筒中,结果是否一样呢?把7支铅笔放进6个笔筒中呢?把10支铅笔放进9个笔筒中呢?把100支铅笔放进99个笔筒中呢?学生回答的同时教师板书:数量(支)笔筒数(个)结果5总有一个笔筒里提问:观察板书,你有什么发现?③小组讨论,引导学生得出一般性结论。(只要放的铅笔数比笔筒的数量多1,总有一个笔筒里至少放进2支铅笔)追问:如果要放的铅笔数比笔筒的数量多2,多3,多4呢?学生根据具体情况思考并解决此类问题。④教师小结。上面我们所证明的数学原理就是最简单的“抽屉原理”,可以概括为:把m个物体任意放到m1个抽屉里,那么总有一个抽屉中至少放进了2个物体。2.教学例2。师:把7本书放进3个抽屉,不管怎么放,总有一个抽屉里至少放进3本书。为什么?自己想一想,再跟小组的同学交流。学生独立思考后,进行小组交流;教师巡视了解情况。组织全班交流,学生可能会说:•我们可以动手操作,选用列举的方法:第一个抽屉765433第二个抽屉011112第三个抽屉001232通过操作,我们把7本书放进3个抽屉,总有一个抽屉至少放进3本书。•我们可以用数的分解法:把7分解成三个数,有(7,0,0),(6,1,0),(5,1,1),(4,1,2),(3,1,3),(3,2,2)这样六种情况。在任何一种情况中,总有一个数不小于3。师:同学们,通过上面两种方法,我们知道了把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少放进3本书。但随着书的本书增多,数据变大,如果有8本书会怎样呢?10本呢?甚至更多呢?用列举法、数的分解法会怎样?(繁琐)我们能不能找到一种适用各种数据的一般方法呢?请同学们自己想一想。学生进行独立思考。师:假设把书尽量的“平均分”给各个抽屉,看每个抽屉能分到多少本书,你们能用什么算式表示这一平均分的过程呢?生:7十3=2……1师:有余数的除法算式说明了...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

《鸽巢问题》教案 人教版

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部