激光在现代通讯的应用与展望姓名:胡家兴摘要:20世纪以来,激光是继原子能、计算机、半导体之后的又一重大科技发明。它一问世就获得了异乎寻常的快速发展。激光在现代通信领域有着广泛的应用。它在扩大通信容量,缓和通信频段拥挤,提高通信安全等方面都发挥着极为重要的作用。关键词:激光技术;现代通讯;激光通信;光子晶体;能量衰减Abstract:Sincethe20thcentury,followingthelaserisanothermajortechnologicalinventionofatomicenergy,computers,semiconductorslater.Itcameonunusuallygainedrapiddevelopment.Inmoderncommunicationslaserhasbeenwidelyused.Itexpandedcommunicationscapacity,easecommunicationbandscrowding,improvesecurityandotheraspectsofcommunicationplaysaveryimportantrole.KeyWords:Lasertechnology;moderncommunications;photoniccrystal;lasercommunication;energyattenuation.引言事实上,1916年激光的原理被著名的物理学家爱因斯坦发现之后一直没有研制成功,原因在于科学实验所需要的器材没有现在发达,一直到1958年激光才被首次成功制造。1.激光基本原理1.1普通光源的发光——受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。激发的过程是一个“受激吸收”过程。处在高能级()的电子寿命很短(一般为秒),在没有外界作用下会自发地向低能级1()跃迁,跃迁时将产生光(电磁波)辐射。辐射光子能量为这种辐射称为自发辐射。原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。在通常热平衡条件下,处于高能级上的原子数密度,远比处于低能级的原子数密度低,这是因为处于能级E的原子数密度N的大小时随能级E的增加而指数减小,即,这是著名的波耳兹曼分布规律。于是在上、下两个能级上的原子数密度比为式中k为波耳兹曼常量,T为绝对温度。因为,所以。例如,已知氢原子基态能量为,第一激发态能量为,在20℃时,,则可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。1.2受激辐射和光的放大由量子理论知识知道,一个能级对应电子的一个能量状态。电子能量由主量子数n(n=1,2,…)决定。但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L和自旋角动量s,它们都是量子化的,由相应的量子数来描述。对轨道角动量,波尔曾给出了量子化公式,但这不严格,因这个式子还是在把电子运动看作轨道运动基础上得到的。严格的能量量子化以及角动量量子化都应该有量子力学理论来推导。2量子理论告诉我们,电子从高能态向低能态跃迁时只能发生在l(角动量量子数)量子数相差±1的两个状态之间,这就是一种选择规则。如果选择规则不满足,则跃迁的几率很小,甚至接近零。在原子中可能存在这样一些能级,一旦电子被激发到这种能级上时,由于不满足跃迁的选择规则,可使它在这种能级上的寿命很长不易发生自发跃迁到低能级上。这种能级称为亚稳态能级。但是,在外加光的诱发和刺激下可以使其迅速跃迁到低能级,并放出光子。这种过程是被“激”出来的,故称受激辐射。受激辐射的概念是爱因斯坦于1917年在推导普朗克的黑体辐射公式时,第一个提出来的。他从理论上预言了原子发生受激辐射的可能性,这是激光的基础。受激辐射的过程大致如下:原子开始处于高能级,当一个外来光子所带的能量正好为某一对能级之差,则这原子可以在此外来光子的诱发下从高能级2E向低能级1E跃迁。这种受激辐射的光子有显著的特点,就是原子可发出与诱发光子全同的光子,不仅频率(能量)相同,而且发射方向、偏振方向以及光波的相位都完全一样...