河北省武邑中学2015-2016学年高二数学上学期周考试题(二)第I卷一、选择题:1.把4名大学实习生分到高一年级3个不同的班,每个班至少分到1名实习生,则不同分法的种数为A.72B.48C.36D.242.某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两人至少有一人参加.当甲乙同时参加时,他们两人的发言不能相邻.那么不同的发言顺序的种数为()A.360B.520C.600D.7203.将甲、乙、丙等六人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为()A.18B.15C.12D.94.用1,2,3,4,5,6组成数字不重复的六位数,满足1不在左右两端,2,4,6三个偶数中有且只有两个偶数相邻,则这样的六位数的个数为()A.432B.288C.216D.1445.在1,2,3,414中任取4个数1234,,,aaaa且满足4332214,3,2aaaaaa共有多少种不同的方法().35A.70B.50C.105D6.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为()A.120B.240C.280D.607.的展开式中含项的系数A.30B.70C.90D.1508.7人排成一排,限定甲要排在乙的左边,乙要排在丙的左边,甲、乙相邻,乙、丙不相邻,则不同排法的种数是()A.60B.120C.240D.3609、.由0到9这十个数字所组成的没有重复数字的五位数中,满足千位、百位、十位上的数字成递增等差数列的五位数共有()A.720个B.684个C.648个D.744个10.若二项式()展开式的常数项为20,则的值为1A.B.C.D.11.设二项式的展开式的各项系数和为,所有二项式系数的和是,若,则A.6B.5C.4D.812.从单词“education”中选取5个不同的字母排成一排,则含“at”(“at”相连且顺序不变)的概率为A.B.C.D.第II卷(非选择题)二、填空题:13.的展开式中的系数是_______.14.若(1+mx)6=a0+a1x+a2x2+…+a6x6,且a1+a2+…+a6=63,则实数m的值为_________.15.已知的展开式中的常数项为,是以为周期的偶函数,且当时,,若在区间内,函数有4个零点,则实数的取值范围是.16.若把英语单词“error”的字母顺序写错了,则可能出现的错误共有________种.17.从装有n+1个球(其中n个白球,1个黑球)的口袋中取出m个球(0<m≤n,m,n∈N),共有种取法.在这种取法中,可以分成两类:一类是取出的m个球全部为白球,另一类是取出m﹣1个白球,1个黑球,共有,即有等式:成立.试根据上述思想化简下列式子:=_________.(1≤k<m≤n,k,m,m∈N).18.有两排座位,前排11个座位,后排12个座位.现在安排甲、乙2人就座,规定前排中间的3个座位不能坐,并且甲、乙不能左右相邻,则一共有不同安排方法多少种?.(用2数字作答).三、解答题:19.设(2x﹣1)5=a0+a1x+a2x2+a3x3+a4x4+a5x5求:(1)a0+a1+a2+a3+a4(2)(a0+a2+a4)2﹣(a1+a3+a5)2.20.在二项式的展开式中(I)求展开式中含项的系数;(II)如果第项和第项的二项式系数相等,试求的值.21、已知(x+)n的展开式中,各项系数的和与其二项式系数的和之比为64.(1)求含x2的项的系数;(2)求展开式中所有的有理项;(3)求展开式中系数最大的项.22.某篮球赛甲、乙两队进入最后决赛,其中甲队有6名打前锋位,4名打后位,另有2名既能打前锋位又能打后位的全能型队员;乙队有4名打前锋位,3名打后位,另有5名既能打前锋位又能打后位的全能型队员。问:(1)甲队有多少种不同的出场阵容?(2)乙队又有多少种不同的出场阵容?(注:每种出场阵容中含3名前锋位和2名后位)23.有9本不同的课外书,分给甲、乙、丙三名同学,求在下列条件下,各有多少种分法?(1)甲得4本,乙得3本,丙得2本;(2)一人得4本,一人得3本,一人得2本;(3)甲、乙、丙各得3本.24.在(n∈N)的展开式中,把叫做三项式的n次系数列.(Ⅰ)例如三项式的1次系数列是1,1,1,填空:三项式的2次系数列是_________;三项式的3次系数列是_________.(Ⅱ)二项式(a+b)n(n∈N)的展开式中,系数可用杨辉三角形数阵表示,如下3①当0≤n≤4,n∈N时,类似杨辉三角形数阵表,请列出三项式的n次系数列的数阵表;②由杨辉三角形数阵表中可得出性质:,类似的请用三项式的n次系数表示(1≤k≤2n...