电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高二数学专题(一)简化圆锥曲线运算的几种数学思想 知识精讲 人教版VIP免费

高二数学专题(一)简化圆锥曲线运算的几种数学思想 知识精讲 人教版_第1页
1/7
高二数学专题(一)简化圆锥曲线运算的几种数学思想 知识精讲 人教版_第2页
2/7
高二数学专题(一)简化圆锥曲线运算的几种数学思想 知识精讲 人教版_第3页
3/7
高二数学专题(一)简化圆锥曲线运算的几种数学思想知识精讲人教版【本讲教育信息】一.教学内容:专题(一)简化圆锥曲线运算的几种数学思想二.教学重、难点:1.重点:圆锥曲线的综合问题。2.难点:灵活运用介绍的几种数学思想简化圆锥曲线的运算。【典型例题】(一)极端思想通过考察圆锥曲线问题的极端元素,灵活地借助极限状态解题,则可以避开抽象及复杂运算,优化解题过程,降低解题难度。这是简化运算量的一条重要途径。[例1]求已知离心率,过点(1,0)且与直线:相切于点(),长轴平行于轴的椭圆方程。解:把点()看作离心率的椭圆(“点椭圆”),则与直线:相切于该点的椭圆系即为过直线与“点椭圆”的公共点的椭圆系方程为:又由于所求的椭圆过点(1,0),代入上式得,因此,所求椭圆方程为:(二)补集思想有些圆锥曲线问题,从正面处理较难,常需分类讨论,运算量大,且讨论不全又容易出错,如用补集思想考虑其对立面,可以达到化繁为简的目的。[例2]为何值时,直线:不能垂直平分抛物线的某弦。解:设,直线垂直平分抛物线的某弦。若直线垂直平分抛物线的弦AB,且A,B,则,上述两式相减得:即又设M是弦AB的中点,且,则因为点M在直线上,所以由于M在抛物线的内部,所以,即用心爱心专心116号编辑故原命题中的取值范围是或(三)整体思想对有些圆锥曲线问题,注意其整体结构特点,设法将问题整体变形转化,以达到避免一些不必要的运算,降低解题难度。[例3]从椭圆外一点P(2,4)作椭圆的切线,求两切线的夹角。解:由椭圆的切线方程知两切线的方程为:又切线过点P(2,4),所以,整理得,所以,所以所以两切线的夹角(四)方程思想把圆锥曲线问题中的解析式看作一个方程,通过解方程的手段或对方程的研究,使问题得到解决,这种思想方法在解析几何试题中经常使用。[例4]已知双曲线C:,设该双曲线上支的顶点为A,且上支与直线相交于P点,一条以A为焦点,M()为顶点,开口向下的抛物线通过点P,设PM的斜率为,且,求实数的取值范围。解:由双曲线方程知A(0,1),则抛物线方程为,由双曲线与直线相交,解得点P的坐标为,又因为点P在抛物线上,所以①而MP的斜率为,所以将代入①,得,即②根据题意,方程②在区间上有实根令,其对称轴方程为所以所以实数的取值范围为(五)函数思想对于圆锥曲线问题上一些动点,在变化过程中会引入一些相互联系、相互制约的变量,从而使变量与其中的参变量之间构成函数关系,此时,用函数思想与函数方法处理起来十分方便。[例5]直线:和双曲线的左支交于A、B两点,直线过P()和用心爱心专心116号编辑AB线段的中点M,求在轴上的截距的取值范围。解:由消去得,由题意,有:设M(),则由P()、M()、Q()三点共线,可求得设,则在上为减函数。所以,且所以所以或(六)参数思想处理圆锥曲线问题,可以通过引入参变量替换,使许多相关或不相关的量统一在参变量下,其妙处在于减少未知量的个数或转化原命题的结构,以达到简化解题过程的目的。[例6]当为何实数时,椭圆与曲线C:有公共点?解:椭圆方程变形为:设,即代入曲线C得:,即(1)椭圆与曲线C有交点,等价于方程(1)有解,即等价于函数的值域所以因为,所以的取值范围是(七)转化思想数学问题的求解过程,实际上就是问题的转化过程。它主要体现在条件由“隐”转化为“显”,结论由“暗”转化为“明”,即从陌生向熟悉、复杂向简单、间接向直接的过程。[例7]设圆满足:①截轴所得弦长为2;②被轴分成两段圆弧,其弧长的比为,在满足条件①、②的所有圆中,求圆心到直线:的距离最小的圆的方程。解:设圆的圆心为P(),半径为,由①知;由②知,圆P截轴所得劣弧对应的圆心角为,即圆P截轴所得的弦长为,故有,消去得圆心的轨迹为:如何求圆心P()到直线:的距离的最小值,这样转化为从不同角度求条件最值问题。转化1:变量替换求最值 ∴用心爱心专心116号编辑设,则有,解得,,所以有=当且仅当,即时,达到最小值。此时可求得或由于,故。于是所求圆的方程是:或转化2:三角代换求最值令,则,所以由,得当达到最小值时,=1,从而,并由此解得或即或,以下同解法1...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高二数学专题(一)简化圆锥曲线运算的几种数学思想 知识精讲 人教版

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部