长春市十一高中2014-2015学年度高二上学期期初考试数学试题(理)本试卷分第一部分(选择题)和第二部分(非选择题),满分150分,测试时间120分钟。第一部分(选择题)一、选择题(每题5分,共60分)1.命题“若a>b,则ac2>bc2(a,b,c∈R)”与它的逆命题、否命题、逆否命题中,真命题的个数为().A.0B.2C.3D.42.已知命题:p∧q为真,则下列命题是真命题的是()A.(p)∧(q)B.(p)∨(q)C.p∨(q)D.(p)∧q3.“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.函数f(x)=x2+mx+1的图象关于直线x=1对称的充要条件是().A.m=-2B.m=2C.m=-1D.m=15.已知平面直角坐标系xOy上的区域D由不等式组给定,若M(x,y)为D上的动点,点A的坐标为(,1),则z=OM·OA的最大值为()A.4B.3C.4D.36.已知F1,F2是定点,|F1F2|=8,动点M满足|MF1|+|MF2|=8,则动点M的轨迹是().A.椭圆B.直线C.圆D.线段7.若椭圆+=1过抛物线y2=8x的焦点,且与双曲线x2-y2=1有相同的焦点,则该椭圆的方程是()A.+=1B.+y2=1C.+=1D.x2+=18.过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为().A.B.C.D.9.P是双曲线-=1(a>0,b>0)上的点,F1,F2是其焦点,双曲线的离心率是,且21PFPF,若△F1PF2的面积是9,则a+b的值等于()A.4B.5C.6D.710.已知0ab,12,ee分别为圆锥曲线22221xyab和22221xyab的离心率,则12lglgee的值为()A.正数B.负数C.零D.不确定11.若双曲线的中心为原点,F(3,0)是双曲线的焦点,过F的直线l与双曲线相交于P,Q两点,且PQ的中点为M(-12,-15),则双曲线的方程为()A.-=1B.-=1C.-=1D.-=112.已知A、B在抛物线y2=2px(p>0)上,O为坐标原点,如果|OA|=|OB|,且△AOB的垂心恰好是此抛物线的焦点F,则直线AB的方程是()A.x-p=0B.4x-3p=0C.2x-5p=0D.2x-3p=0第二部分(非选择题)二、填空题(每题5分,共20分)13.若命题“ax2-2ax-3>0不成立”是真命题,则实数a的取值范围是________.14.已知P是双曲线-=1上一点,F1,F2是双曲线的两个焦点,若|PF1|=17,则|PF2|的值为________.15.已知中心在原点,对称轴为坐标轴,长半轴长与短半轴长的和为9,离心率为的椭圆的标准方程为________.16.已知以y=±x为渐近线的双曲线D:-=1(a>0,b>0)的左,右焦点分别为F1,F2,若P为双曲线D右支上任意一点,则的取值范围是________.三、解答题(本大题共6小题,共70分)17.(本小题满分12分)已知434:2xp,)0(012:22mmxxq若p是q的必要非充分条件,求实数m的取值范围.18.(本小题满分12分)已知0c,设p:函数xyc在R上单调递减,q:不等式21xxc的解集为R,如果p∧q是假命题,p∨q真命题,求c的取值范围。19.(本小题满分12分)已知二次曲线Ck的方程:+=1.(Ⅰ)分别求出方程表示椭圆和双曲线的条件;(Ⅱ)若双曲线Ck与直线y=x+1有公共点且实轴最长,求双曲线方程;20.(本小题满分12分)已知椭圆C:+=1(a>b>0)的长轴长为4.(Ⅰ)若以原点为圆心、椭圆短半轴为半径的圆与直线y=x+2相切,求椭圆C的焦点坐标;(Ⅱ)若点P是椭圆C上的任意一点,过原点的直线l与椭圆相交于M,N两点,记直线PM,PN的斜率分别为kPM、kPN,当kPM·kPN=-时,求椭圆的方程.21.(本小题满分12分)在平面直角坐标系xOy中,直线l与抛物线y2=4x相交于不同的A、B两点.(Ⅰ)如果直线l过抛物线的焦点,求OA�·OB�的值;(Ⅱ)如果OA�·OB�=-4,证明直线l必过一定点,并求出该定点.22.(本小题满分10分)已知椭圆方程为+y2=1,设过定点M(0,2)的直线l与椭圆交于不同的两点A,B,且∠AOB为锐角(其中O为原点),求直线l斜率k的取值范围.长春市十一高中2014-2015学年度高二数学上学期期初考试答案一、选择题(本大题共12小题.每小题5分,共60分)二、填空题(本题共4个小题。每小题5分,共20分)13.[-3,0];14.33;15+=1或+=1;16....