圆周角(1)学习目标1、经历探索圆周角的有关性质的过程2、理解圆周角的概念及其相关性质,并能运用相关性质解决有关问题3、体会分类、转化等数学思想方法,学会数学地思考问题学习重、难点重点:圆周角及圆周角定理难点:圆周角定理的应用学习过程:一、情境创设操作与思考如图,点A在⊙O外,点B1、B2、B3在⊙O上,点C在⊙O内,度量∠A、∠B1、∠B2、∠B3、∠C的大小,你能发现什么?∠B1、∠B2、∠B3有什么共同的特征?__________________________________________________归纳得出结论,顶点在_______,并且两边________________________的角叫做圆周角。强调条件:①_______________________,②___________________________。识别图形:判断下列各图中的角是否是圆周角?并说明理由.二、探索活动活动一观察与思考如图,AB为⊙O的直径,∠BOC、∠BAC分别是BC所对的圆心角、圆周角,求出图(1)、(2)、(3)中∠BAC的度数.通过计算发现:∠BAC=_______∠BOC.试证明这个结论:活动二思考与探索1、如图,BC所对的圆心角有多少个?BC所对的圆周角有多少个?请在图中画出BC所对的圆心角和圆周角,并与同学们交流。2、思考与讨论(1)观察上图,在画出的无数个圆周角中,这些圆周角与圆心O有几种位置关系?(2)设BC所对的圆周角为∠BAC,除了圆心O在∠BAC的一边上外,圆心O与∠BAC还有哪几种位置关系?对于这几种位置关系,结论∠BAC=∠BOC还成立吗?试证明之.OACBBBPQ231OCBA通过上述讨论发现:______________________________________________三、例题解析例1如图,点A、B、C在⊙O上,点D在圆外,CD、BD分别交⊙O于点E、F,比较∠BAC与∠BDC的大小,并说明理由。五、课堂练习P119练习1、2、3六、课堂小结1、顶点在圆上,并且两边和圆相交的角叫做圆周角;2、在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半。七、作业P122习题5.31、3、4八、教后感FEOADBC