2018-2019学年山西省吕梁市柳林县九年级(上)期末数学模拟试卷一.选择题(共10小题,满分30分,每小题3分)1.已知a=(﹣)﹣,b=﹣(﹣),c=﹣﹣,判断下列叙述何者正确?()A.a=c,b=cB.a=c,b≠cC.a≠c,b=cD.a≠c,b≠c2.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补3.一个不透明的盒子中装有1个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为()A.B.C.D.4.满足不等式组的整数解是()A.﹣2B.﹣1C.0D.15.下列计算正确的是()A.3x2﹣2x2=1B.(﹣2ab)3=﹣6a3b3C.(a﹣b)2=a2﹣b2D.π0=16.如图将△ABC绕点A顺时针旋转90°得到△AED,若点B、D、E在同一条直线上,∠BAC=20°,则∠ADB的度数为()A.55°B.60°C.65°D.70°7.若代数式的值为零,则x的取值范围为()A.x=2或x=﹣1B.x=﹣1C.x=±2D.x=28.碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸,我国某物理所研究组已研制出直径为0.5纳米的碳纳米管,1纳米=0.000000001米,则0.5纳米用科学记数法表示为()A.0.5×10﹣9米B.5×10﹣8米C.5×10﹣9米D.5×10﹣10米9.如图,在△ABC中,AB=AC,AO是∠BAC的平分线,与AB的垂直平分线DO交于点O,∠ACB沿EF折叠后,点C刚好与点O重合,下列结论错误的是()A.AO=COB.∠ECO=∠FCOC.EF⊥OCD.∠BFO=2∠FOC10.如图是一个餐盘,它的外围是由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成,已知正三角形的边长为10,则该餐盘的面积是()A.50π﹣50B.50π﹣25C.25π+50D.50π二.填空题(共5小题,满分15分,每小题3分)11.比较大小:﹣﹣1(填“>”、“=”或“<”)12.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.13.如图,在10×10的正方形网格中,点ABCD均在格点上,以点A为位似中心在网格中画四边形A′B′C′D',使它与四边形ABCD的相似比为2.14.如图,△ABC中,∠C=90°,∠A=30°,∠ABC的角平分线BD交AC于D点,AD=4,则CD=.15.将抛物线y=x2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为.三.解答题(共8小题,满分75分)16.(1)计算:(﹣)﹣1﹣|﹣2|﹣2sin45°+(3﹣π)0;(2)化简求值:(+)÷,其中a,b满足+|b﹣|=0.17.已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.(1)求证:四边形ABCD是菱形;(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.18.如图,在平面直角坐标系xOy中,已知直线y=x与反比例函数y=(k≠0)的图象交于点A,且点A的横坐标为1,点B是x轴正半轴上一点,且AB⊥OA.(1)求反比例函数的解析式;(2)求点B的坐标;(3)先在∠AOB的内部求作点P,使点P到∠AOB的两边OA、OB的距离相等,且PA=PB;再写出点P的坐标.(不写作法,保留作图痕迹,在图上标注清楚点P)19.为改善教学条件,学校准备对现有多媒体设备进行升级改造,已知购买3个键盘和1个鼠标需要190元;购买2个键盘和3个鼠标需要220元;(1)求键盘和鼠标的单价各是多少元?(2)经过与经销商洽谈,键盘打八折,鼠标打八五折.若学校计划购买键盘和鼠标共50件,且总费用不超过1820元,则最多可购买键盘多少个?20.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:摸球的次数n20484040100001200024000摸到白球的次数m106120484979601912012摸到白球的频率0.5180.50690.49790.50160.5005(1)请估计:当n很大时,摸到白球的频率将会接近;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率.21.如图,AB是⊙O的直径...