第六章《概率初步》一、选择题(每小题3分,共30分)1.下列事件中,属于不可能事件的是()A.某两个负数的积大于0B.某个数的相反数等于它本身C.某两个数的和小于0D.某个数的绝对值小于02.小明用一枚均匀的硬币试验,前7次掷得的结果都是下面向上,如果将第8次掷得下面向上的概率记为P,则()A.P=0.5B.P<0.5C.P>0.5D.无法确定3.一幅扑克去掉大小王后,从中任抽一张是红桃的概率是()A.21B.41C.131D.5214.在如图所示的正方形纸片上做随机扎针试验,则针头扎在阴影区域内的概率为()A.B.C.D.5.(2014•广东)一个不透明的布袋里装有7个仅有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是()A.B.C.D.6.一次抽奖活动中,印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么第一位抽奖者(仅买一张奖券)中奖的机会是()A.150B.225C.15D.3107.下列事件:①在足球赛中,弱队战胜强队;②抛掷一枚硬币,落地后正面朝上;③任取两个正整数,其和大于1;④长分别为3,5,8的三条线段能围成一个三角形.其中确定事件的个数是()A.1B.2C.3D.48.(2016四川达州)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.9.(2015•四川南充)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a;如果投掷一枚硬币,正面向上的概率为B.关于a,b大小的正确判断是()(A)a>b(B)a=b(C)a<b(D)不能判断10.李明用6个球设计了一个摸球游戏,共有四种方案,肯定不能成功的是()A.摸到黄球、红球的概率是21B.摸到黄球、红球、白球的概率分别为21、31、61C.摸到黄球的概率是32,摸到红球、白球的概率都是31D.摸到黄球、红球、白球的概率都是31二.填空题:(每小题3分,共30分)11.口袋中放有黄、白、红三种颜色的小球各1个,这3个球除颜色外没有任何区别,随机从口袋中任取1个球,写出这个试验中一个可能发生的事件:.12.从围棋盒中抓出一大把棋子,所抓出棋子的个数是奇数的概率为.13.(2013·上海中考)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为.14.(2014•邵阳)有一个能自由转动的转盘如图,盘面被分成8个大小与性状都相同的扇形,颜色分为黑白两种,将指针的位置固定,让转盘自由转动,当它停止后,指针指向白色扇形的概率是.15.(2014•泰州)任意抛掷一枚质地均匀的正方体骰子1次,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数大于4的概率为..16.(2013·苏州中考)17.如图所示,一个矩形区域ABCD,点E,F分别是AB,DC的中点,求一只蝴蝶落在阴影部分的概率为.17.(2016山东济宁)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.18.甲、乙两人在5次体育测试中的成绩(成绩为整数,满分为100分)如下表,其中乙的第5次成绩的个位数字被污损,则乙的平均成绩高于甲的平均成绩的概率是.第1次第2次第3次第4次第5次甲9088879392乙84878598三、解答题(共46分)19.(6分)在一个不透明的口袋中装有大小、外形一模一样的5个红球、3个蓝球和2个白球,它们已经在口袋中被搅匀了,请判断以下事件是不确定事件、不可能事件还是必然事件.(1)从口袋中一次任意取出一个球,是白球;(2)从口袋中一次任取5个球,全是蓝球;(3)从口袋中一次任取5个球,只有蓝球和白球,没有红球;(4)从口袋中一次任意取出6个球,恰好红、蓝、白三种颜色的球都齐了.(5)从口袋中一次任意取出8个球,一定有蓝球。20.(6分)口袋里有15个球,其中有x个白球,2x个绿球,其余为黑球,小红从中任意摸出一个球,若为绿色则小红获胜;小红摸出的球放回袋中,小文从中摸出一个球,若为黑色则小文获胜.问x为何值时,小红和小文两人获胜的可能性一样大?21.(8分)中国网坛一姐职业生涯首次捧起WTA超五系列赛的冠军奖杯,在国内掀起一股网球热,某市准备为青少年举行一次网球知识讲座,小明和妹妹...