十八大题(包含独立重复实验,传统概率,新型概率,二项式展开)1从10个元件中(其中4个相同的甲品牌元件和6个相同的乙品牌元件)随机选出3个参加某种性能测试.每个甲品牌元件能通过测试的概率均为,每个乙品牌元件能通过测试的概率均为.试求:(I)选出的3个元件中,至少有一个甲品牌元件的概率;(II)若选出的三个元件均为乙品牌元件,现对它们进行性能测试,求至少有两个乙品牌元件同时通过测试的概率.解:(Ⅰ)随机选出的3个元件中,至少有一个甲品牌元件的概率为1-;(Ⅱ)至少有两个乙品牌元件同时通过测试的概率为=;2经统计,某大型商场一个结算窗口每天排队结算的人数及相应的概率如下:排队人数0—56—1011—1516—2021—2525人以上0.10.150.250.250.20.05(I)每天不超过20人排队结算的概率是多少?(Ⅱ)一周7天中,若有3天以上(含3天)出现超过15人排队结算的概率大于0.75,商场就需要增加结算窗口,请问该商场是否需要增加结算窗口?解:(I)每天不超过20人排队结算的概率为:P=0.1+0.15+0.25+0.25=0.75,即不超过20人排队结算的概率是0.75.(Ⅱ)每天超过15人排队结算的概率为:0.25+0.2+0.05=,一周7天中,没有出现超过15人排队结算的概率为;一周7天中,有一天出现超过15人排队结算的概率为;一周7中,有二天出现超过15人排队结算的概率为;……………9分所以有3天或3天以上出现超过15人排队结算的概率为:,所以,该商场需要增加结算窗口.3在一次由三人参加的围棋对抗赛中,甲胜乙的概率为0.4,乙胜丙的概率是0.5,丙胜甲的概率是0.6,比赛按以下规则进行;第一局:甲对乙;第二局:第一局胜者对丙;第三局:第二局胜者对第一局败者;第四局:第三局胜者对第二局败者。求:(1)乙连胜四局的概率;(2)丙连胜三局的概率.解:(1)当乙连胜四局时,对阵情况如下:第一局:甲对乙,乙胜;第二局:乙对丙,乙胜;第三局:乙对甲,乙胜;第四局:乙对丙,乙胜.∴乙连胜四局的概率为=×==0.09(2)丙连胜三局的对阵情况如下:第一局:甲对乙,甲胜,或乙胜.当甲胜时,第二局:甲对丙,丙胜.第三局:丙对乙,丙胜;第四局:丙对甲,丙胜.当乙胜时,第二局:乙对丙,丙胜;第三局:丙对甲,丙胜;第四局:丙对乙,丙胜.∴丙连胜三局的概率=0.4××0.5+(1-0.4)××0.6=0.162.4求(4+2x+x2)(2-x)7的展开式中x5的系数。解:(4+2x+x2)(2-x)7=(8-x3)(x-2)6=(8-x3)[(x6-2C61x5+(-2)2C62x4+(-2)3C63x3+(-2)4C64x2+…)∴含x5的项为-2×8×C61·x5-(-2)4C64x5=-336x5∴x5的系数为-336用心爱心专心115号编辑5已知的展开式前三项中的x的系数成等差数列。(1)求展开式里所有的x的有理项;(2)求展开式里系数最大的项。解:(1) 由题设可知解得n=8或n=1(舍去)当n=8时,通项据题意,必为整数,从而可知r必为4的倍数,而0≤r≤8∴r=0,4,8,故x的有理项为,,(1)设第r+1项的系数tr+1最大,显然tr+1>0,故有≥1且≤1 由≥1得r≤3又 由≤1得:r≥2∴r=2或r=3所求项为和6用n种不同颜色为下列两块广告牌着色(如图),要求在①,②,③,④个区域中相邻(有公共边界)的区域不用同一种颜色。(1)若n=6,为甲着色时共有多少种不同方法?(2)若为乙着色时共有120种不同方法,求n。解:完成着色这件事,共分四个步骤,可依次考虑为①、②、③、④着色时各自的方法数,再由乘法原理确定决的着色方法数。因此(1)为①着色有6种方法,为②着色有5种方法,为③着色有4种方法,为④着色也只有4种方法。∴共有着色方法6×5×4×4=480种(2)与①的区别在于与④相邻的区域由两块变成了三块,同理,不同的着色方法数是n(n-1)(n-2)(n-3)由n(n-1)(n-2)(n-3)=120∴(n2-3n)(n2-3n+2)-120=0即(n2-3n)2+2(n2-3n)-12×10=0∴n2-3n-10=0∴n=57按以下要求分配6本不同的书,各有几种分法?(1)平均分给甲、乙、丙三人,每人2本;(2)平均分成三份,每份2本;(3)甲、乙、丙三人一人得1本,一人得2本,一人得3本;(4)分成三份,一份1本,一份2本,一份3本;(5)甲、乙、丙三人中,一人得4本,另二人每人得1本;(6)分成三份,一份4本,另两份每份1本;(7)甲得1本,乙得1本,...