专题23等比数列及其前n项和(1)理解等比数列的概念.(2)掌握等比数列的通项公式与前n项和公式.(3)了解等比数列与指数函数的关系.一、等比数列1.等比数列的概念如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比.注意:(1)等比数列的每一项都不可能为0;(2)公比是每一项与其前一项的比,前后次序不能颠倒,且公比是一个与无关的常数.2.等比中项如果在与中间插入一个数,使,,成等比数列,那么叫做与的等比中项,此时.3.等比数列的通项公式及其变形首项为,公比为的等比数列的通项公式是.等比数列通项公式的变形:.4.等比数列与指数函数的关系等比数列的通项公式还可以改写为,当且时,是指数函数,是指数型函数,因此数列的图象是函数的图象上一些孤立的点.当或时,是递增数列;当或时,是递减数列;当时,为常数列;当时,为摆动数列,所有的奇数项(偶数项)同号,奇数项与偶数项异号.二、等比数列的前n项和公式首项为,公比为的等比数列的前项和的公式为(1)当公比时,因为,所以是关于n的正比例函数,则数列的图象是正比例函数图象上的一群孤立的点.(2)当公比时,等比数列的前项和公式是,即,设,则上式可写成的形式,则数列的图象是函数图象上的一群孤立的点.由此可见,非常数列的等比数列的前n项和是一个关于n的指数型函数与一个常数的和,且指数型函数的系数与常数项互为相反数.三、等比数列及其前n项和的性质若数列是公比为的等比数列,前n项和为,则有如下性质:(1)若,则;若,则.推广:若,则.(2)若成等差数列,则成等比数列.(3)数列仍是公比为的等比数列;数列是公比为的等比数列;数列是公比为的等比数列;若数列是公比为的等比数列,则数列是公比为的等比数列.(4)成等比数列,公比为.(5)连续相邻项的和(或积)构成公比为或的等比数列.(6)当时,;当时,.(7).(8)若项数为,则,若项数为,则.(9)当时,连续项的和(如)仍组成等比数列(公比为,).注意:这里连续m项的和均非零.考向一等比数列的判定与证明等比数列的判定与证明常用的方法:(1)定义法:为常数且数列是等比数列.(2)等比中项法:数列是等比数列.(3)通项公式法:数列是等比数列.(4)前项和公式法:若数列的前项和,则该数列是等比数列.其中前两种方法是证明等比数列的常用方法,而后两种方法一般用于选择题、填空题中.注意:(1)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可.(2)只满足的数列未必是等比数列,要使其成为等比数列还需要.典例1设数列{an}的前n项和为Sn,若对于任意的正整数n都有Sn=2an-3n,设bn=an+3.求证:数列{bn}是等比数列,并求an.1.已知各项为正数的数列{an},a1=1,(an+an-1)(an-3an-1-2)=0(n≥2,n∈N*),证明:{an+1}是等比数列.考向二等比数列的基本运算等比数列基本量的计算是解等比数列题型时的基础方法,在高考中常有所体现,多以选择题或填空题的形式呈现,有时也会出现在解答题的第(1)问中,属基础题.(1)等比数列的基本运算方法:①等比数列由首项与公比确定,所有关于等比数列的计算和证明,都可围绕与进行.②对于等比数列问题,一般给出两个条件,就可以通过解方程(组)求出与,对于五个基本量,如果再给出第三个条件就可以“知三求二”.(2)基本量计算过程中涉及的数学思想方法:①方程思想.等比数列的通项公式和前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算,通过列方程(组)求出关键量和q,问题可迎刃而解.②分类讨论思想.等比数列的前项和公式为,所以当公比未知或是代数式时,要对公比分和进行讨论.此处是常考易错点,一定要引起重视.③整体思想.应用等比数列前n项和公式时,常把,当成整体求解.典例2已知是等比数列,且,,则等于A.B.24C.D.48【答案】B典例3设是等比数列的前项和,,则公比A.B.C.或D.或【答案】C【解析】,又解得或,选C.2.设公比为的等比数列的前项和为,若,,则A.B.C.D.考向三求解等比数列的通项及前n项和1.求等比数列的通项公式,一...