电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高考数学总复习 第九单元 解析几何 第63讲 直线与圆的综合应用检测-人教版高三全册数学试题VIP免费

高考数学总复习 第九单元 解析几何 第63讲 直线与圆的综合应用检测-人教版高三全册数学试题_第1页
1/3
高考数学总复习 第九单元 解析几何 第63讲 直线与圆的综合应用检测-人教版高三全册数学试题_第2页
2/3
高考数学总复习 第九单元 解析几何 第63讲 直线与圆的综合应用检测-人教版高三全册数学试题_第3页
3/3
第63讲直线与圆的综合应用1.(2016·福建四地六校联考)已知矩形ABCD的对角线交于点P(2,0),边AB所在的直线的方程为x+y-2=0,点(-1,1)在边AD上所在的直线上.(1)求矩形ABCD的外接圆的方程;(2)已知直线l:(1-2k)x+(1+k)y-5+4k=0(k∈R),求证:直线l与矩形ABCD的外接圆相交,并求最短弦长.(1)依题意得AB⊥AD,所以kAD=1.所以AD的方程为y-1=x+1,即x-y+2=0.由得即A(0,2).由已知得矩形ABCD的外接圆是以P(2,0)为圆心,|AP|=2为半径,其方程为(x-2)2+y2=8.(2)l:(x+y-5)+k(y-2x+4)=0,所以即直线l过定点M(3,2).因为(3-2)2+22=5<8,所以点M(3,2)在圆内,所以直线l与圆相交.而圆心P与定点M的距离d==,所以最短弦长=2=2.2.在平面直角坐标系xOy中,已知圆P在x轴上截得的线段长为2,在y轴上截得的线段长为2.(1)求圆心P的轨迹方程;(2)若P点到直线y=x的距离为,求圆P的方程.(1)设P(x,y),圆P的半径长为r,由题设知y2+2=r2,x2+3=r2,从而y2+2=x2+3,故P点的轨迹方程为y2-x2=1.(2)设P(x0,y0),由已知得=,又点P在双曲线y2-x2=1上,从而得由得此时,圆P的半径r=.由得此时,圆P的半径r=.故圆P的方程为x2+(y+1)2=3或x2+(y-1)2=3.3.(2017·新课标卷Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M作x轴的垂线,垂足为N,点P满足NP=NM.(1)求点P的轨迹方程;(2)设点Q在直线x=-3上,且OP·PQ=1,证明:过点P且垂直于OQ的直线l过C的左焦点F.(1)设P(x,y),M(x0,y0),则N(x0,0),NP=(x-x0,y),NM=(0,y0).由NP=NM得x0=x,y0=y.因为M(x0,y0)在C上,所以+=1.因此点P的轨迹方程为x2+y2=2.(2)证明:由题意知F(-1,0).设Q(-3,t),P(m,n),则OQ=(-3,t),PF=(-1-m,-n),OQ·PF=3+3m-tn,OP=(m,n),PQ=(-3-m,t-n).由OP·PQ=1得-3m-m2+tn-n2=1.又由(1)知m2+n2=2,故3+3m-tn=0.所以OQ·PF=0,即OQ⊥PF.又过点P存在唯一直线垂直于OQ,所以过点P且垂直于OQ的直线l过C的左焦点F.4.(2016·江苏卷)如图,在平面直角坐标系xOy中,已知以M为圆心的圆M:x2+y2-12x-14y+60=0及其上一点A(2,4).(1)设圆N与x轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;(2)设平行于OA的直线l与圆M相交于B,C两点,且BC=OA,求直线l的方程;(3)设点T(t,0)满足:存在圆M上的两点P和Q,使得TA+TP=TQ,求实数t的取值范围.圆M的标准方程为(x-6)2+(y-7)2=25,所以圆心M(6,7),半径为5.(1)由圆心N在直线x=6上,可设N(6,y0).因为圆N与x轴相切,与圆M外切,所以0<y0<7,圆N的半径为y0,从而7-y0=5+y0,解得y0=1.因此,圆N的标准方程为(x-6)2+(y-1)2=1.(2)因为直线l∥OA,所以直线l的斜率为=2.设直线l的方程为y=2x+m,即2x-y+m=0,则圆心M到直线l的距离d==.因为BC=OA==2,而MC2=d2+2,所以25=+5,解得m=5或m=-15.故直线l的方程为2x-y+5=0或2x-y-15=0.(3)设P(x1,y1),Q(x2,y2).因为A(2,4),T(t,0),TA+TP=TQ,所以①因为点Q在圆M上,所以(x2-6)2+(y2-7)2=25.②将①代入②,得(x1-t-4)2+(y1-3)2=25.于是点P(x1,y1)既在圆M上,又在圆[x-(t+4)]2+(y-3)2=25上,从而圆(x-6)2+(y-7)2=25与圆[x-(t+4)]2+(y-3)2=25有公共点,所以5-5≤≤5+5,解得2-2≤t≤2+2.因此,实数t的取值范围是[2-2,2+2].

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高考数学总复习 第九单元 解析几何 第63讲 直线与圆的综合应用检测-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部