电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国通用)高考数学二轮复习 第一部分 微专题强化练 专题22 随机变量及其分布列 理(含解析)-人教版高三全册数学试题VIP免费

(全国通用)高考数学二轮复习 第一部分 微专题强化练 专题22 随机变量及其分布列 理(含解析)-人教版高三全册数学试题_第1页
1/10
(全国通用)高考数学二轮复习 第一部分 微专题强化练 专题22 随机变量及其分布列 理(含解析)-人教版高三全册数学试题_第2页
2/10
(全国通用)高考数学二轮复习 第一部分 微专题强化练 专题22 随机变量及其分布列 理(含解析)-人教版高三全册数学试题_第3页
3/10
【走向高考】(全国通用)2016高考数学二轮复习第一部分微专题强化练专题22随机变量及其分布列理(含解析)一、解答题1.(2014·安徽理,17)甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X为比赛决出胜负时的总局数,求X的分布列和均值(数学期望).[分析]①甲在四局内赢得比赛,即甲前两局胜,或第一局败,二、三局胜,或第一局胜,第二局败,第三、四局胜.②比赛总局数最少2局,最多5局,求概率时,既要考虑甲胜结束,又要考虑乙胜结束.③由于各局比赛结果相互独立,故按独立事件公式计算积事件的概率.[解析]用A表示“甲在4局以内(含4局)赢得比赛”,Ak表示“第k局甲获胜”,Bk表示“第k局乙获胜”,则P(Ak)=,P(Bk)=,k=1,2,3,4,5.(1)P(A)=P(A1A2)+P(B1A2A3)+P(A1B2A3A4)=P(A1)P(A2)+P(B1)P(A2)P(A3)+P(A1)P(B2)P(A3)P(A4)=()2+×()2+××()2=.(2)X的可能取值为2,3,4,5.P(X=2)=P(A1A2)+P(B1B2)=P(A1)P(A2)+P(B1)P(B2)=,P(X=3)=P(B1A2A3)+P(A1B2B3)=P(B1)P(A2)P(A3)+P(A1)P(B2)P(B3)=,P(X=4)=P(A1B2A3A4)+P(B1A2B3B4)=P(A1)P(B2)P(A3)P(A4)+P(B1)P(A2)P(B3)P(B4)=,P(X=5)=1-P(X=2)-P(X=3)-P(X=4)=.故X的分布列为X2345PE(X)=2×+3×+4×+5×=.[方法点拨]1.求复杂事件的概率的一般步骤:1°列出题中涉及的各事件,并且用适当的符号表示;2°理清各事件之间的关系,列出关系式;3°根据事件之间的关系准确选取概率公式进行计算.2.直接计算符合条件的事件的概率较繁时,可先间接地计算对立事件的概率,再求出符合条件的事件的概率.3.要准确理解随机变量取值的意义,准确把握每一个事件所包含的基本事件,然后依据类型代入概率公式进行计算.4.概率与统计知识结合的问题,先依据统计知识明确条件,求出有关统计的结论,再将所求问题简化为纯概率及其分布的问题,依据概率及其分布列、期望、方差的知识求解.5.离散型随机变量的分布列的性质:设离散型随机变量X的分布列为:Xx1x2…xi…xnPp1p2…pi…pn则①pi≥0,i=1,2,…,n;②p1+p2+…+pi+…+pn=1.2.(2015·重庆理,17)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望.[分析]考查了古典概型的概率以及分布列、数学期望,属于简单题型.(1)由古典概型概率公式计算;(2)从含有2个豆沙粽的10个粽子中取3个,据此可得出X的可能取值及其概率,列出分布列求得期望.[解析](1)令A表示事件“三种粽子各取到1个”,由古典概型的概率计算公式有P(A)==.(2)X的可能取值为0,1,2,且P(X=0)==,P(X=1)==,P(X=2)==综上知,X的分布列为:X012P故E(X)=0×+1×+2×=(个)[方法点拨]如果题目条件是从含A类物品M件,总数为N的A、B两类物品中,抽取n件,其中含有A类物品件数X为随机变量,则按超几何分布公式直接计算.请练习下题:一盒中有12个零件,其中有3个次品,从盒中每一次取出一个零件,取后不放回,求在取到正品前已取次数X的分布列和期望.[分析]由于题设中要求取出次品不再放回,故应仔细分析每一个X所对应的事件的准确含义.据此正确地计算概率p.[解析]X可能的取值为0、1、2、3这四个数,而X=k表示,共取了k+1次零件,前k次取得的是次品,第k+1次取得正品,其中k=0、1、2、3.(1)当X=0时,第1次取到正品,试验中止,此时P(X=0)==.(2)当X=1时,第1次取到次品,第2次取到正品,P(X=1)=×=.(3)当X=2时,前2次取到次品,第3次取到正品,P(X=2)=××=.当X=3时,前3次将次品全部取出,P(X=3)=××=.所以X的分布列为:X0123PE(X)=0×+1×+2×+3×=.3.(2014·石家庄质检)某商场为了了解顾客的购物信息,随机的在商场收集了100位顾客购物的相关数据,整理如下:一次购物款(单位:元)[0...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国通用)高考数学二轮复习 第一部分 微专题强化练 专题22 随机变量及其分布列 理(含解析)-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部