专题三三角函数及解三角形第1讲三角函数的图象与性质真题试做1.(2012·大纲全国高考,文3)若函数f(x)=sin(φ∈[0,2π])是偶函数,则φ=().A.B.C.D.2.(2012·安徽高考,文7)要得到函数y=cos(2x+1)的图象,只要将函数y=cos2x的图象().A.向左平移1个单位B.向右平移1个单位C.向左平移个单位D.向右平移个单位3.(2012·天津高考,文7)将函数f(x)=sinωx(其中ω>0)的图象向右平移个单位长度,所得图象经过点,则ω的最小值是().A.B.1C.D.24.(2012·湖南高考,文18)已知函数f(x)=Asin(ωx+φ)的部分图象如图所示.(1)求函数f(x)的解析式;(2)求函数g(x)=f-f的单调递增区间.考向分析三角函数的图象与性质是高考考查的重点及热点内容,主要从以下三个方面进行考查:1.三角函数的概念与诱导公式,主要以选择、填空题的形式为主.2.三角函数的图象,主要涉及图象变换问题以及由图象确定函数解析式问题,主要以选择、填空题的形式考查,有时也会出现大题.3.三角函数的性质,通常是给出函数解析式,先进行三角变换,将其转化为y=Asin(ωx+φ)的形式再研究其性质,或知道某三角函数的图象或性质求其解析式,再研究其他性质,既有直接考查的客观题,也有综合考查的主观题.热点例析热点一三角函数的概念【例1】已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=().A.-B.-C.D.规律方法当已知角的终边所经过的点或角的终边所在的直线固定时,通常先根据任意角三角函数的定义求这个角的三角函数.特别提醒:(1)当角的终边经过的点不固定时,需要进行分类讨论,特别是当角的终边在过坐标原点的一条直线上时,根据定义求三角函数值时,要把这条直线看做两条射线,分别求解.(2)在利用诱导公式和同角三角函数关系式时,一定要特别注意符号,一定要理解“奇变偶不变,符号看象限”的意思;同角三角函数的平方关系中,开方后的符号要根据角所在的象限确定.变式训练1(2012·福建莆田高三质检,11)已知角α的顶点在坐标原点,始边与x轴的正半轴重合,终边与单位圆交点的横坐标是-,若α∈(0,π),则tanα=__________.热点二三角函数图象及解析式【例2】如图,根据函数的图象,求函数y=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的解析式.规律方法由部分图象确定函数解析式问题解决的关键在于确定参数A,ω,φ,其基本方法是在观察图象的基础上,利用待定系数法求解.若设所求解析式为y=Asin(ωx+φ),则在观察图象的基础上,可按以下规律来确定A,ω,φ.(1)一般可由图象上的最大值、最小值来确定|A|,或代入点的坐标解关于A的方程;(2)因为T=,所以往往通过求周期T来确定ω.可通过已知曲线与x轴的交点确定周期T,或者相邻的两个最高点与最低点之间的距离为;相邻的两个最高点(或最低点)之间的距离为T;(3)从寻找五点法中的第一零点(也叫初始点)作为突破口,要从图象的升降情况找准第一零点的位置,或者在五点中找两个特殊点列方程组解出φ.(4)代入点的坐标,通过解三角方程,再结合图象确定ω,φ.特别提醒:求y=Asin(ωx+φ)的解析式,最难的是求φ,第一零点常常用来求φ,只要找准第一零点的横坐标,列方程就能求出φ.若对A,ω的符号或对φ的范围有要求,可用诱导公式变换,使其符合要求.变式训练2(2012·福建泉州质检,8)下图所示的是函数y=Asin(ωx+φ)(A>0,ω>0)图象的一部分,则其函数解析式是().A.y=sinB.y=sinC.y=sinD.y=sin热点三三角函数图象变换【例3】(2012·四川绵阳高三三诊,10)已知函数f(x)=Asin(ωx+φ)在一个周期内的图象如图所示,则y=f(x)的图象可由函数y=cosx的图象(纵坐标不变)().A.先把各点的横坐标缩短到原来的倍,再向左平移个单位B.先把各点的横坐标缩短到原来的倍,再向右平移个单位C.先把各点的横坐标伸长到原来的2倍,再向左平移个单位D.先把各点的横坐标伸长到原来的2倍,再向右平移个单位规律方法图象变换理论:(1)平移变换①沿x轴平移,按“左加右减”法则;②沿y轴平移,按“上加下减”法则;(2)伸缩变换①沿x轴伸缩时,横坐标x伸长(0<ω<1)或缩短(ω>1)为原来...