新泰一中实验学校2017级高二上学期第二次单元测试数学试题一.选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填涂在答题卡上)1.命题“∃x0∈R,2≥1”的否定是()A.∃x0∈R,2<1B.∃x0∈R,2≤1C.∀x∈R,2x≥1D.∀x∈R,2x<12.若向量=(3,2,x),=(1,0,2),=(1,﹣1,4)满足条件(﹣)⊥,则实数x的值为()A.﹣1B.2C.3D.43.若2m>2n,则下列结论一定成立的是()A.m|m|>n|n|B.>C.2m﹣n<1D.ln(m﹣n)>04.等差数列{an}中,a2+a5+a8=12,那么关于x的方程x2+(a4+a6)x+10=0()A.无实根B.有两个相等实根C.有两个不等实根D.不能确定有无实根5.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有()A.12种B.16种C.20种D.24种6.已知{an}是单调递增的等比数列,满足a3•a5=16,a2+a6=17,则数列{an}的前n项和Sn=()A.2B.2C.2D.27.已知关于x的一元二次不等式ax2﹣3x+6>4的解集为{x|x<1或x>b},则a+b的值是()A.4B.3C.6D.58.已知等差数列{an}的前n项和为Sn,则“Sn的最大值是S8”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.抛物线y2=2px(p>0)上一点P到焦点的距离为3,若点P的横坐标为2,则抛物线方程为()A.y2=6xB.y2=4xC.y2=2xD.y2=x10.若,则()A.B.C.D.11.设x>0.y>0,若是9x与3y的等比中项,则+的最小值为()A.2B.8C.9D.1012.双曲线C1:(a>0,b>0)的焦点为F1(0,﹣c)、F2(0,c),抛物线C2:的准线与C1交于M、N两点,且以MN为直径的圆过F2,则椭圆的离心率的平方为()A.B.C.D.二.填空题(本大题共4小题,每小题5分,共20分,把答案填在答题纸给定的横线上.)13.展开式的常数项为.14.已知向量,,若,则λ=.15.随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,4,其中c为常数,则P(ξ≥2)等于.16.已知P在椭圆上,是椭圆的两个焦点,,且的三条边长成等差数列,则椭圆的离心率e=___________.三.解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程)17.(10分)已知命题p:方程x2+y2﹣4x+2my+2m2﹣m+2=0表示圆;命题q:方程+=1表示焦点在y轴上的椭圆.(I)若命题p为真命题时.求实数m的取值范围;(Ⅱ)若p是q的必要不充分条件,求实数a的取值范围.18.(12分)数列{an}的前n项和为Sn,已知3an=2Sn+3.(1)数列的通项公式an;(2)已知bn=(2n﹣1)•an,求数列{bn}的前n项和Tn.19.(12分)如图1,在直角△ABC中,∠ABC=90°,AC=4,AB=2,D,E分别为AC,BD中点,连接AE并延长交BC于点F,将△ABD沿BD折起,使平面ABD⊥平面BCD如图2所示.(1)求证:AE⊥CD;(2)求平面AEF与平面ADC所成锐二面角的余弦值.20.(12分)支付宝作为一款移动支付工具,在日常生活中起到了重要的作用.(1)通过现场调查12位市民得知,其中有10人使用支付宝.现从这12位市民中随机抽取3人,求至少抽到2位使用支付宝的市民的概率;(2)为了鼓励市民使用支付宝,支付宝推出了“奖励金”活动,每使用支付宝支付一次,分别有,,的概率获得0.1,0.2,0.3元奖励金,每次支付获得的奖励金情况互不影响.若某位市民在一天内使用了2次支付宝,记X为这一天他获得的奖励金数,求X的概率分布和数学期望.21.(12分)某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x(x∈N*)名员工从事第三产业,调整后他们平均每人每年创造利润为万元(a>0),剩下的员工平均每人每年创造的利润可以提高0.2x%.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a的取值范围是多少?22.(12分)已知F1,F2分别是椭圆的左、右焦点,离心率为,M,N分别是椭圆的上、下顶点,.(1)求椭...