电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国新课标)高考数学大二轮复习 第二编 专题整合突破 专题八 系列4选讲 第一讲 坐标系与参数方程适考素能特训 文-人教版高三全册数学试题VIP免费

(全国新课标)高考数学大二轮复习 第二编 专题整合突破 专题八 系列4选讲 第一讲 坐标系与参数方程适考素能特训 文-人教版高三全册数学试题_第1页
1/3
(全国新课标)高考数学大二轮复习 第二编 专题整合突破 专题八 系列4选讲 第一讲 坐标系与参数方程适考素能特训 文-人教版高三全册数学试题_第2页
2/3
(全国新课标)高考数学大二轮复习 第二编 专题整合突破 专题八 系列4选讲 第一讲 坐标系与参数方程适考素能特训 文-人教版高三全册数学试题_第3页
3/3
专题八系列4选讲第一讲坐标系与参数方程适考素能特训文1.[2016·合肥质检]在直角坐标系xOy中,曲线C:(α为参数),在以O为极点,x轴的非负半轴为极轴的极坐标系中,直线l:ρsinθ+ρcosθ=m.(1)若m=0时,判断直线l与曲线C的位置关系;(2)若曲线C上存在点P到直线l的距离为,求实数m的取值范围.解(1)曲线C的普通方程为:(x-1)2+(y-1)2=2,是一个圆;当m=0时,直线l的直角坐标方程为:x+y=0,圆心C到直线l的距离为d===r,r为圆C的半径,所以直线l与圆C相切.(2)由已知可得,圆心C到直线l的距离为d=≤,解得-1≤m≤5.2.[2016·湖南四校联考]已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4sin.(1)求圆C的直角坐标方程;(2)若P(x,y)是直线l与圆面ρ≤4sin的公共点,求x+y的取值范围.解(1)因为圆C的极坐标方程为ρ=4sin,所以ρ2=4ρsin=4ρ又ρ2=x2+y2,x=ρcosθ,y=ρsinθ,所以x2+y2=2y-2x,所以圆C的普通方程为x2+y2+2x-2y=0.(2)设z=x+y,由圆C的方程x2+y2+2x-2y=0⇒(x+1)2+(y-)2=4,所以圆C的圆心是(-1,),半径是2,将代入z=x+y得z=-t.又直线l过C(-1,),圆C的半径是2,所以-2≤t≤2,所以-2≤-t≤2,即x+y的取值范围是[-2,2].3.[2016·山西质检]已知曲线C1:x+y=和C2:(φ为参数).以原点O为极点,x轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)把曲线C1和C2的方程化为极坐标方程;(2)设C1与x,y轴交于M,N两点,且线段MN的中点为P.若射线OP与C1,C2交于P,Q两点,求P,Q两点间的距离.解(1)C1:ρsin=,C2:ρ2=.(2) M(,0),N(0,1),∴P,∴OP的极坐标方程为θ=,把θ=代入ρsin=得ρ1=1,P.把θ=代入ρ2=得ρ2=2,Q.∴|PQ|=|ρ2-ρ1|=1,即P,Q两点间的距离为1.4.[2016·长春质量监测]在直角坐标系xOy中,曲线C1的参数方程为(t是参数),以原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=8cos.(1)求曲线C2的直角坐标方程,并指出其表示何种曲线;(2)若曲线C1和曲线C2交于A,B两点,求|AB|的最大值和最小值.解(1)对于曲线C2有ρ=8cos,即ρ2=4ρcosθ+4ρsinθ,因此曲线C2的直角坐标方程为x2+y2-4x-4y=0,其表示一个圆.(2)联立曲线C1与曲线C2的方程可得:t2-2sinα·t-13=0,|AB|=|t1-t2|===,因此|AB|的最小值为2,最大值为8.5.[2016·河南六市一联]在平面直角坐标系中,直线l的参数方程为(t为参数),在以直角坐标系的原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C的极坐标方程为ρ=.(1)求曲线C的直角坐标方程和直线l的普通方程;(2)若直线l与曲线C相交于A,B两点,求△AOB的面积.解(1)由曲线C的极坐标方程ρ=,得ρ2sin2θ=2ρcosθ,所以曲线C的直角坐标方程是y2=2x.由直线l的参数方程得t=3+y,代入x=1+t中,消去t得x-y-4=0,所以直线l的普通方程为x-y-4=0.(2)将直线l的参数方程代入曲线C的直角坐标方程y2=2x,得t2-8t+7=0,设A,B两点对应的参数分别为t1,t2,则t1+t2=8,t1t2=7,所以|AB|=|t1-t2|=×=×=6,因为原点到直线x-y-4=0的距离d==2,所以△AOB的面积是|AB|·d=×6×2=12.6.[2016·贵阳监测]极坐标系与直角坐标系xOy有相同的长度单位,以原点为极点,以x轴正半轴为极轴,曲线C1的极坐标方程为ρ=4cosθ(ρ≥0),曲线C2的参数方程为(t为参数,0≤α<π),射线θ=φ,θ=φ+,θ=φ-与曲线C1分别交于(不包括极点O)点A、B、C.(1)求证:|OB|+|OC|=|OA|;(2)当φ=时,B、C两点在曲线C2上,求m与α的值.解(1)证明:依题意|OA|=4cosφ,|OB|=4cos,|OC|=4cos,则|OB|+|OC|=4cos+4cos=2(cosφ-sinφ)+2(cosφ+sinφ)=4cosφ=|OA|.(2)当φ=时,B、C两点的极坐标分别为、,化为直角坐标为B(1,)、C(3,-),所以经过点B、C的直线方程为y-=-(x-1),而C2是经过点(m,0)且倾斜角为α的直线,故m=2,α=.7.[2016·重庆测试]在直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点为...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国新课标)高考数学大二轮复习 第二编 专题整合突破 专题八 系列4选讲 第一讲 坐标系与参数方程适考素能特训 文-人教版高三全册数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部