小题专练·作业(十三)椭圆、双曲线、抛物线1.方程+=1表示双曲线的一个充分不必要条件是()A.-30,b>0),直线l:y=2x-2。若直线l平行于双曲线C的一条渐近线且经过C的一个顶点,则双曲线C的焦点到渐近线的距离为()A.1B.2C.D.4解析由题意可知,双曲线的一个顶点为(1,0),所以a=1,又=2,所以b=2,c=,则焦点(,0)到渐近线y=2x的距离d==2。答案B4.(2018·全国卷Ⅰ)设抛物线C:y2=4x的焦点为F,过点(-2,0)且斜率为的直线与C交于M,N两点,则FM·FN=()A.5B.6C.7D.8解析解法一:根据题意,过点(-2,0)且斜率为的直线方程为y=(x+2),与抛物线方程联立消元整理得:y2-6y+8=0,解得M(1,2),N(4,4),又F(1,0),所以FM=(0,2),FN=(3,4),从而可以求得FM·FN=0×3+2×4=8。故选D。解法二:过点(-2,0)且斜率为的直线的方程为y=(x+2),由得x2-5x+4=0,设M(x1,y1),N(x2,y2),则y1>0,y2>0,根据根与系数的关系,得x1+x2=5,x1x2=4。易知F(1,0),所以FM=(x1-1,y1),FN=(x2-1,y2),所以FM·FN=(x1-1)(x2-1)+y1y2=x1x2-(x1+x2)+1+4=4-5+1+8=8。故选D。答案D5.双曲线-=1(a>0,b>0)的离心率为,左、右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线的方程为()A.-y2=1B.x2-=1C.x2-=1D.-y2=1解析由∠F1PF2的平分线为l,点F1关于l的对称点为Q,可得直线l为F1Q的垂直平分线,且Q在PF2的延长线上,可得|PF1|=|PQ|=|PF2|+|F2Q|,即|PF1|-|PF2|=|F2Q|,由双曲线的定义可得|PF1|-|PF2|=2a,由|F2Q|=2,可得a=1,由e==,可得c=,则b==,则双曲线的方程为x2-=1。故选B。答案B6.(2018·全国卷Ⅲ)设F1,F2是双曲线C:-=1(a>0,b>0)的左,右焦点,O是坐标原点。过F2作C的一条渐近线的垂线,垂足为P。若|PF1|=|OP|,则C的离心率为()A.B.2C.D.解析不妨设一条渐近线的方程为y=x,则F2到y=x的距离d==b,在Rt△F2PO中,|F2O|=c,所以|PO|=a,所以|PF1|=a,又|F1O|=c,所以在△F1PO与Rt△F2PO中,根据余弦定理得cos∠POF1==-cos∠POF2=-,即3a2+c2-(a)2=0,得3a2=c2,所以e==。故选C。答案C7.(2018·湖南湘东五校联考)已知椭圆+=1(a>b>0)的左,右焦点分别为F1、F2,P是椭圆上一点,△PF1F2是以F2P为底边的等腰三角形,且60°<∠PF1F2<120°,则该椭圆的离心率的取值范围是()A.B.C.D.解析由题意可得,|PF2|2=|F1F2|2+|PF1|2-2|F1F2|·|PF1|cos∠PF1F2=4c2+4c2-2·2c·2c·cos∠PF1F2,即|PF2|=2c·,所以a==c+c·,又60°<∠PF1F2<120°,所以-0,b>0)的右焦点F(c,0)到一条渐近线的距离为c,则其离心率的值是________。解析不妨设双曲线的一条渐近线方程为y=x,所以=b=c,所以b2=c2-a2=c2,得c=2a,所以双曲线的离心率e==2。答案210.(2018·广东五校联考)已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足0<+y<1,则|PF1|+|PF2|的取值范围是________。解析由点P(x0,y0)满足0<+y<1,可知P(x0,y0)一定在椭圆内(不包括原点),因为a=,b=1,所以由椭圆的定义可知|PF1|+|PF2|<2a=2,又|PF1|+|PF2|≥...