2018高考数学异构异模复习考案第一章集合与常用逻辑用语1.2.1四种命题及其真假判断撬题文1.已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面答案D解析A中,垂直于同一个平面的两个平面可能相交也可能平行,故A错误;B中,平行于同一个平面的两条直线可能平行、相交或异面,故B错误;C中,若两个平面相交,则一个平面内与交线平行的直线一定和另一个平面平行,故C错误;D中,若两条直线垂直于同一个平面,则这两条直线平行,所以若两条直线不平行,则它们不可能垂直于同一个平面,故D正确.2.若m∈N,命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是()A.若方程x2+x-m=0有实根,则m>0B.若方程x2+x-m=0有实根,则m≤0C.若方程x2+x-m=0没有实根,则m>0D.若方程x2+x-m=0没有实根,则m≤0答案D解析∵“m>0”的否定是“m≤0”,“方程x2+x-m=0有实根”的否定是“方程x2+x-m=0没有实根”,∴命题“若m>0,则方程x2+x-m=0有实根”的逆否命题是“若方程x2+x-m=0没有实根,则m≤0”.3.已知下列三个命题:①若一个球的半径缩小到原来的,则其体积缩小到原来的;②若两组数据的平均数相等,则它们的标准差也相等;③直线x+y+1=0与圆x2+y2=相切,其中真命题的序号是()A.①②③B.①②C.①③D.②③答案C解析对于命题①,设原球的半径和体积分别为r,V,变化后的球的半径和体积分别为r′,V′,则r′=r,由球的体积公式可知V′=πr′3=π·3=×πr3=V,所以命题①为真命题;命题②显然为假命题,如两组数据:1,2,3和2,2,2,它们的平均数都是2,但前者的标准差为,而后者的标准差为0;对于命题③,易知圆心到直线的距离d===r,所以直线与圆相切,命题③为真命题.故选C.4.下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为()A.p1,p2B.p3,p4C.p2,p3D.p1,p4答案D解析对于p1,数列{an}的公差d>0,∴数列是递增数列;对于p4,∵[an+1+3(n+1)d]-(an+3nd)=4d>0,是递增数列;对于p2,∵(n+1)an+1-nan=(n+1)an+(n+1)d-nan=a1+2nd,不能确定a1的正负,上式不一定大于零,该数列不一定是递增数列;同理,对于p3,也不一定是递增数列.故选D.5.下列命题中,真命题是()A.命题“若a>b,则ac2>bc2”B.命题“若a=b,则|a|=|b|”的逆命题C.命题“当x=2时,x2-5x+6=0”的否命题D.命题“终边相同的角的同名三角函数值相等”的逆否命题答案D解析命题“若a>b,则ac2>bc2”是假命题,如a>b且c=0时,ac2=bc2;命题“若a=b,则|a|=|b|”的逆命题为“若|a|=|b|,则a=b”是假命题;命题“当x=2时,x2-5x+6=0”的否命题为“若x≠2,则x2-5x+6≠0”,是假命题;命题“终边相同的角的同名三角函数值相等”是真命题,其逆否命题与原命题等价,为真命题.