电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(新课改地区)高考数学一轮复习 核心素养测评四十三 利用空间向量证明空间中的位置关系 新人教B版-新人教B版高三全册数学试题VIP免费

(新课改地区)高考数学一轮复习 核心素养测评四十三 利用空间向量证明空间中的位置关系 新人教B版-新人教B版高三全册数学试题_第1页
1/10
(新课改地区)高考数学一轮复习 核心素养测评四十三 利用空间向量证明空间中的位置关系 新人教B版-新人教B版高三全册数学试题_第2页
2/10
(新课改地区)高考数学一轮复习 核心素养测评四十三 利用空间向量证明空间中的位置关系 新人教B版-新人教B版高三全册数学试题_第3页
3/10
核心素养测评四十三利用空间向量证明空间中的位置关系(30分钟60分)一、选择题(每小题5分,共25分)1.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,1,1),则()A.l∥αB.l⊥αC.l⊂α或l∥αD.l与α斜交【解析】选C.因为a=(1,0,2),n=(-2,1,1),所以a·n=0,即a⊥n,所以l∥α或l⊂α.2.已知a=(1,1,1),b=(0,2,-1),c=ma+nb+(4,-4,1).若c与a及b都垂直,则m,n的值分别为()A.-1,2B.1,-2C.1,2D.-1,-2【解析】选A.由已知得c=(m+4,m+2n-4,m-n+1),故a·c=3m+n+1=0,b·c=m+5n-9=0.解得m=-1,n=2.3.已知平面α内有一点M(1,-1,2),平面α的一个法向量为n=(6,-3,6),则下列点P中,在平面α内的是()A.P(2,3,3)B.P(-2,0,1)C.P(-4,4,0)D.P(3,-3,4)【解析】选A.逐一验证法,对于选项A,=(1,4,1),所以·n=6-12+6=0,所以⊥n,所以点P在平面α内,同理可验证其他三个点不在平面α内.4.如图所示,在平行六面体ABCD-A1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:①A1M∥D1P;②A1M∥B1Q;③A1M∥平面DCC1D1;④A1M∥平面D1PQB1.以上说法正确的个数为()A.1B.2C.3D.4【解析】选C.=+=+,=+=+,所以∥,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确.5.如图,F是正方体ABCD-A1B1C1D1的棱CD的中点.E是BB1上一点,若D1F⊥DE,则有()A.B1E=EBB.B1E=2EBC.B1E=EBD.E与B重合【解析】选A.分别以DA,DC,DD1为x,y,z轴建立空间直角坐标系,设正方体的棱长为2,则D(0,0,0),F(0,1,0),D1(0,0,2),设E(2,2,z),则=(0,1,-2),=(2,2,z),因为·=0×2+1×2-2z=0,所以z=1,所以B1E=EB.二、填空题(每小题5分,共15分)6.若A0,2,,B1,-1,,C-2,1,是平面α内的三点,设平面α的法向量a=(x,y,z),则x∶y∶z=________.【解析】=1,-3,-,=-2,-1,-,a·=0,a·=0,x∶y∶z=y∶y∶-y=2∶3∶(-4).答案:2∶3∶(-4)7.如图所示,在正方体ABCD-A1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.【解析】以A为原点,分别以,,所在直线为x,y,z轴,建立空间直角坐标系,设正方体的棱长为1,则A(0,0,0),M,O,N,0,1,·=0,1,·0,-,1=0,所以ON与AM垂直.答案:垂直8.如图,正方体ABCD-A1B1C1D1的棱长为1,E,F分别是棱BC,DD1上的点,如果B1E⊥平面ABF,则CE与DF的和的值为________.【解析】以D1A1,D1C1,D1D分别为x,y,z轴建立空间直角坐标系,设CE=x,DF=y,则易知E(x,1,1),B1(1,1,0),F(0,0,1-y),B(1,1,1),所以=(x-1,0,1),=(1,1,y),因为B1E⊥平面ABF,所以·=(1,1,y)·(x-1,0,1)=0,所以x+y=1.答案:1三、解答题(每小题10分,共20分)9.已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.求证:(1)AM∥平面BDE.(2)AM⊥平面BDF.【证明】(1)建立如图所示的空间直角坐标系,设AC∩BD=N,连接NE.则N,,0,E(0,0,1),A(,,0),M,,1,所以=-,-,1,=-,-,1.所以=且NE与AM不共线.所以NE∥AM.又因为NE⊂平面BDE,AM⊄平面BDE,所以AM∥平面BDE.(2)由(1)知=-,-,1,因为D(,0,0),F(,,1),所以=(0,,1)所以·=0,所以AM⊥DF.同理AM⊥BF.又DF∩BF=F,所以AM⊥平面BDF.10.如图所示,已知四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:(1)PA⊥BD.(2)平面PAD⊥平面PAB.【证明】(1)取BC的中点O,连接PO,因为平面PBC⊥底面ABCD,△PBC为等边三角形,平面PBC∩底面ABCD=BC,PO⊂平面PBC,所以PO⊥底面ABCD.以BC的中点O为坐标原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,OP所在直线为z轴,建立空间直角坐标系,如图所示.不妨设CD=1,则AB=BC=2,PO=,所以A(1,-2,0),B(1,0,0),D(-1,-1,0),P(0,0,),所以=(-2,-1,0),=(1,-2,-).因为·=(-2)×1+(-1)×(-2)+0×(-)=0,所以⊥,所以PA⊥BD.(2)取PA的中点M,连接DM,则M,-1,.因为=,0,,=(1,0,-),所以·=×1+0×0+×(-)=0,所以⊥,即DM⊥PB.因为·=×1+0×(-2)+×(-)=0,所以⊥,即DM⊥PA.又因为PA∩PB=P,PA,PB⊂平面PAB,所以DM⊥平面PAB.因为DM⊂平面PAD,所以平面PAD⊥平面PAB.(15分钟35分)1.(5分)正方体ABCD-A1B1C1D1的棱长为a,点M在AC1上且=,N为B1B的中点,则||为()A.aB.aC.aD.a【解析】选A.以D为原点建立如图所示的空间直角坐标系,则A(a,0,0)...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(新课改地区)高考数学一轮复习 核心素养测评四十三 利用空间向量证明空间中的位置关系 新人教B版-新人教B版高三全册数学试题

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

相关文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部