专题17坐标系与参数方程1.在直角坐标系xOy中,圆C的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(2)直线l的参数方程是(t为参数),l与C交于A、B两点,|AB|=,求l的斜率.解(1)由x=ρcosθ,y=ρsinθ可得圆C的极坐标方程ρ2+12ρcosθ+11=0.(2)在(1)中建立的极坐标系中,直线l的极坐标方程为θ=α(ρ∈R).2.已知圆C的极坐标方程为ρ2+2ρ·sin-4=0,求圆C的半径.解以极坐标系的极点为平面直角坐标系的原点O,以极轴为x轴的正半轴,建立直角坐标系xOy.圆C的极坐标方程为ρ2+2ρ-4=0,化简,得ρ2+2ρsinθ-2ρcosθ-4=0.则圆C的直角坐标方程为x2+y2-2x+2y-4=0,即(x-1)2+(y+1)2=6,所以圆C的半径为.3.在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,若极坐标方程为ρcosθ=4的直线与曲线(t为参数)相交于A,B两点,求AB的长.解极坐标方程ρcosθ=4的普通方程为x=4,代入得t=±2,当t=2时,y=8;当t=-2时,y=-8.两个交点坐标分别为(4,8),(4,-8),从而AB=16.4.在直角坐标系中圆C的参数方程为(α为参数),若以原点O为极点,以x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程.解由参数方程消去α得圆C的方程为x2+(y-2)2=4,将x=ρcosθ,y=ρsinθ,代入得(ρcosθ)2+(ρsinθ-2)2=4,整理得ρ=4sinθ.5.已知曲线C:(θ为参数),直线l:ρ(cosθ-sinθ)=12.(1)将直线l的极坐标方程和曲线C的参数方程分别化为直角坐标方程和普通方程;(2)设点P在曲线C上,求P点到直线l的距离的最小值.易错起源1、极坐标与直角坐标的互化例1、在极坐标系中,曲线C1:ρ(cosθ+sinθ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,求a的值.解ρ(cosθ+sinθ)=1,即ρcosθ+ρsinθ=1对应的普通方程为x+y-1=0,ρ=a(a>0)对应的普通方程为x2+y2=a2.在x+y-1=0中,令y=0,得x=.将代入x2+y2=a2得a=.【变式探究】在以O为极点的极坐标系中,直线l与曲线C的极坐标方程分别是ρcos(θ+)=3和ρsin2θ=8cosθ,直线l与曲线C交于点A、B,求线段AB的长.解 ρcos(θ+)=ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=3,∴直线l对应的直角坐标方程为x-y=6.又 ρsin2θ=8cosθ,∴ρ2sin2θ=8ρcosθ.∴曲线C对应的直角坐标方程是y2=8x.【名师点睛】(1)在由点的直角坐标化为极坐标时,一定要注意点所在的象限和极角的范围,否则点的极坐标将不唯一.(2)在与曲线的方程进行互化时,一定要注意变量的范围,要注意转化的等价性.【锦囊妙计,战胜自我】直角坐标与极坐标的互化把直角坐标系的原点作为极点,x轴正半轴作为极轴,且在两坐标系中取相同的长度单位.如图,设M是平面内的任意一点,它的直角坐标、极坐标分别为(x,y)和(ρ,θ),则,.易错起源2、参数方程与普通方程的互化例2、在平面直角坐标系xOy中,圆C的参数方程为(t为参数).在极坐标系(与平面直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴非负半轴为极轴)中,直线l的方程为ρsin=m(m∈R).(1)求圆C的普通方程及直线l的直角坐标方程;(2)设圆心C到直线l的距离等于2,求m的值.【变式探究】已知直线l的参数方程为(t为参数),P是椭圆+y2=1上的任意一点,求点P到直线l的距离的最大值.解由于直线l的参数方程为(t为参数),故直线l的普通方程为x+2y=0.因为P为椭圆+y2=1上的任意一点,故可设P(2cosθ,sinθ),其中θ∈R.因此点P到直线l的距离是d==.所以当θ=kπ+,k∈Z时,d取得最大值.【名师点睛】(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有代入消参法,加减消参法,平方消参法等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解、漏解,若x、y有范围限制,要标出x、y的取值范围.【锦囊妙计,战胜自我】1.直线的参数方程过定点M(x0,y0),倾斜角为α的直线l的参数方程为(t为参数).2.圆的参数方程圆心在点M(x0,y0),半径为r的圆的参数方程为(θ为参数,0≤θ≤2π).3.圆锥曲线的参数方程(1)椭圆...