6.2均值不等式核心考点·精准研析考点一利用均值不等式求最值命题精解读考什么:(1)考查求最值,证明不等式等问题.(2)考查数学运算、数学抽象、逻辑推理的【核心素养】.怎么考:求式子的最值,证明不等式、与函数结合考查求函数的值域,与解析几何结合求面积等几何量的最值.新趋势:与函数相结合求值域.学霸好方法1.求最值的解题思路(1)拼凑法:拼凑成积或和为定值,利用均值不等式求相应的最值.(2)构造法:通过对已知条件的变形,构造定值,代入后利用均值不等式求值.(3)消元法:当要求最值的式子中含有多个字母时,应考虑利用已知条件减少字母的个数,以达到利用均值不等式求最值的目的.2.交汇问题与方程、不等式交汇时,涉及恒成立问题、参数的范围等.通过拼凑定值求最值【典例】已知a,b>0,则+的最小值为__________.【解析】因为a,b>0,方法一:原式=+1+-1=+-1≥2-1=4-1=3,当且仅当=,a=b时取等号.方法二:所以+=+1+-1≥2-1=3,当且仅当+1=,即a=b时取等号.答案:3本例不能直接运用均值不等式时怎么办?提示:通过分子分母同除以a统一式子的结构或直接加1变形,再观察拼凑定值利用均值不等式求最小值.通过常值代换求最值【典例】(2019·深圳模拟)已知a>1,b>0,a+b=2,则+的最小值()A.+B.+C.3+2D.+【解析】选A.已知a>1,b>0,a+b=2,可得(a-1)+b=1,a-1>0,则+=[(a-1)+b]=1+++≥+2=+;当且仅当=,a+b=2时取等号.则+的最小值为+.将条件进行变形目的是什么?提示:将已知条件变形,变形的方向是要证明的式子,特别是与式子分母相关的定值,将定值变为1后相乘,再利用均值不等式求最值.通过消元求最值【典例】(2020·武汉模拟)若正数x,y满足x+4y-xy=0,则的最大值为()A.B.C.D.【解析】选B.因为正数x,y满足x+4y-xy=0,所以y=>0,解得x>4,所以===≤=,当且仅当x-4=,x=6时等号成立,所以的最大值为.将其中一个字母利用另一个字母表示,代入后的变形方向如何?提示:构造定值以利用均值不等式求最值.构造二次不等式求最值【典例】(2019·重庆模拟)已知a,b,c均为正实数,且ab+2a+b=6,则2a+b的最小值为________.【解析】因为a,b,c均为正实数,且ab+2a+b=6,所以6-2a-b=ab=×2ab≤,所以(2a+b)2+8(2a+b)-48≥0,所以2a+b≥4,当且仅当a=1,b=2时取等号,所以2a+b的最小值为4.答案:4本题利用均值不等式,将已知式子进行转换的目标是什么?提示:转化成关于2a+b的二次不等式,通过解不等式求最值.1.设x,y∈R,且xy≠0,则的最小值为()A.-9B.9C.10D.02.(2020·厦门模拟)已知00,b>0,且2a+b=ab-1,则a+2b的最小值为()A.5+2B.8C.5D.94.已知正数x,y满足x2+2xy-3=0,则2x+y的最小值是()A.1B.3C.6D.12【解析】1.选B.=5++x2y2≥5+2=9,当且仅当xy=±时,上式取得等号,可得最小值为9.2.选D.因为00,所以+=(x+1-x)=5++≥5+2=9,当且仅当=,即x=时取等号,所以+取得最小值时x=.3.选A.因为a>0,b>0,且2a+b=ab-1,所以a=>0,所以b>2,所以a+2b=+2b=2(b-2)++5≥5+2=5+2,当且仅当2(b-2)=,即b=2+时取等号.所以a+2b的最小值为5+2.4.选B.因为x2+2xy-3=0,所以y=,所以2x+y=2x+==+≥2=3.当且仅当=,即x=1时取等号.1.已知点A(1,2)在直线ax+by-1=0(a>0,b>0)上,若存在满足该条件的a,b,使得不等式+≤m2+8m成立,则实数m的取值范围是()A.(-∞,-1]∪[9,+∞)B.(-∞,-9]∪[1,+∞)C.[-1,9]D.[-9,1]【解析】选B.点A(1,2)在直线ax+by-1=0(a>0,b>0)上,可得a+2b=1,+=(a+2b)=5++≥5+2=9,当且仅当a=b=时取得等号,即+的最小值为9,则9≤m2+8m,解得m≥1或m≤-9.2.以点(-1,-1)为圆心且与曲线C:xy=1(x>0)有公共点的圆称之为C的“望圆”,则曲线C的所有“望圆”中半径最小值为()A.4B.C.8D.2【解析】选D.根据题意,设为曲线C上任意一点,“望圆”的半径为r,若“望圆”与曲线C有公共点,则r2=(t+1)2+=t2++2+2≥2+2×2+2=8,当且仅当t=时,等号成立,则r的最小值为2.考点二均值不等式在实际问题中的应用【典例】经测算,某型号汽车在匀速行驶过程中每小时耗油量y(L)与速度x(km/h)(50≤x≤120)的关系可近似表示为y=当该型号汽车的速度为________km/h时,每小时耗油量最少,最少为每小时________L.【解析】当x∈[50,80)时,y...