2.1.2演绎推理A级基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.《论语·子路》篇中说:“名不正,则言不顺;言不顺,则事不成;事不成,则礼乐不兴;礼乐不兴,则刑罚不中;刑罚不中,则民无所措手足.”;所以,“名不正,则民无所措手足.”上述推理用的是()A.类比推理B.归纳推理C.演绎推理D.一次三段论解析:这是一个复合三段论,从“名不正”推出“民无所措手足”,连续运用五次复式三段论,属演绎推理形式.答案:C3.在证明f(x)=2x+1为增函数的过程中,有下列四个命题:①增函数的定义是大前提;②增函数的定义是小前提;③函数f(x)=2x+1满足增函数的定义是大前提;④函数f(x)=2x+1满足增函数的定义是小前提.其中正确的命题是()A.①④B.②④C.①③D.②③解析:根据“三段论”特点,过程应为:大前提是增函数的定义;小前提是f(x)=2x+1满足增函数的定义;结论是f(x)=2x+1为增函数.所以①④正确.答案:A4.在不等边三角形中,a为最大边,要想得到∠A为钝角的结论,三边a,b,c应满足的条件是()A.a2<b2+c2B.a2=b2+c2C.a2>b2+c2D.a2≤b2+c2解析:当a2>b2+c2,则cosA=<0,又A∈(0,π)知A为钝角.答案:C5.f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0.对任意正数a,b,若a<b,则必有()A.bf(a)<af(b)B.af(a)>bf(b)C.af(a)<f(b)D.bf(b)<f(a)解析:构造函数F(x)=xf(x),则F′(x)=xf′(x)+f(x),由题设条件知F(x)=xf(x)在(0,+∞)上单调递减.1若a<b,则F(a)>F(b),即af(a)>bf(b).答案:B二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a0,f(x)=+是R上的偶函数,则a的值为________.解析:因为f(x)是R上的偶函数...