第6讲双曲线第6讲双曲线【2013年高考会这样考】1.考查利用基本量求双曲线的标准方程,考查双曲线的定义、几何图形.2.考查求双曲线的几何性质及其应用.【复习指导】本讲复习时,应紧扣双曲线的定义,熟练掌握双曲线的标准方程、几何图形以及简单的几何性质、近几年高考多以选择题.填空题进行考查.双曲线焦点焦距ac两条射线标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形2.双曲线的标准方程和几何性质一条规律双曲线为等轴双曲线⇔双曲线的离心率e=2⇔双曲线的两条渐近线互相垂直(位置关系).两种方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a、2b或2c,从而求出a2、b2,写出双曲线方程.(2)待定系数法:先确定焦点是在x轴上还是在y轴上,设出标准方程,再由条件确定a2、b2的值,即“先定型,再定量”;如果焦点位置不好确定,可将双曲线方程设为x2m2-y2n2=λ(λ≠0),再根据条件求λ的值.三个防范(1)区分双曲线中的a,b,c大小关系与椭圆a,b,c关系,在椭圆中a2=b2+c2,而在双曲线中c2=a2+b2.(2)双曲线的离心率大于1,而椭圆的离心率e∈(0,1).(3)双曲线x2a2-y2b2=1(a>0,b>0)的渐近线方程是y=±bax,y2a2-x2b2=1(a>0,b>0)的渐近线方程是y=±abx.双基自测1.(人教A版教材习题改编)双曲线x210-y22=1的焦距为().A.32B.42C.33D.43解析由已知有c2=a2+b2=12,∴c=23,故双曲线的焦距为43.答案D2.(2011·安徽)双曲线2x2-y2=8的实轴长是().A.2B.22C.4D.42解析双曲线2x2-y2=8的标准方程为x24-y28=1,所以实轴长2a=4.答案C3.(2012·烟台调研)设双曲线x2a2-y2b2=1(a>0,b>0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为().A.y=±2xB.y=±2xC.y=±22xD.y=±12x解析由题意得b=1,c=3.∴a=2,∴双曲线的渐近线方程为y=±bax,即y=±22x.答案C4.(2011·山东)已知双曲线x2a2-y2b2=1(a>0,b>0)的两条渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为().A.x25-y24=1B.x24-y25=1C.x23-y26=1D.x26-y23=15.(2012·银川质检)设P是双曲线x2a2-y29=1上一点,双曲线的一条渐近线方程为3x-2y=0,F1、F2分别是双曲线的左、右焦点,若|PF1|=3,则|PF2|等于________.解析由渐近线方程y=32x,且b=3,得a=2,由双曲线的定义,得|PF2|-|PF1|=4,又|PF1|=3,∴|PF2|=7.答案7由双曲线的第一定义可以判断点P的位置关系,在利用第二定义解题时,要注意左焦点与左准线相对应,右焦点与右准线相对应.【训练1】(2011·太原重点中学联考)在平面直角坐标系xOy中,已知双曲线x24-y212=1上一点M的横坐标为3,则点M到此双曲线的右焦点的距离为________.解析由题易知,双曲线的右焦点为(4,0),点M的坐标为(3,15)或(3,-15),则点M到此双曲线的右焦点的距离为4.答案4考向二求双曲线的标准方程【例2】►(2011·东莞调研)设椭圆C1的离心率为513,焦点在x轴上且长轴长为26.若曲线C2上的点到椭圆C1的两个焦点的距离的差的绝对值等于8,则曲线C2的标准方程为().A.x242-y232=1B.x2132-y252=1C.x232-y242=1D.x2132-y2122=1[审题视点]抓住C2上动点满足的几何条件用定义法求方程.解析由题意知椭圆C1的焦点坐标为:F1(-5,0),F2(5,0).设曲线C2上的一点P.则||PF1|-|PF2||=8.由双曲线的定义知:a=4,b=3.故曲线C2的标准方程为x242-y232=1.答案A(1)当焦点位置不确定时,方程可能有两种形式,求方程时应分类讨论,或者将方程设为mx2+ny2=1(mn<0).(2)已知双曲线的渐近线方程bx±ay=0,求双曲线方程时,可设双曲线方程为b2x2-a2y2=λ(λ≠0).根据其他条件确定λ的值.若求得λ>0,则焦点在x轴上;若求得λ<0,则焦点在y轴上.解析依题意a2-b2=5,根据对称性,不妨取一条渐近线y=2x,由y=2x,x2a2+y2b2=1,解得x=±ab4a2+b2,故被椭圆截得的弦长为25ab4a2+b2,又C1把AB三等分,所以25ab4a2+b2=2a3,两边平方并整理得a2=11b2,代入a2-b2=5得b2=12.答案C在双曲线的几何性质中,应充分利...