一、公式法例1.已知等比数列中,求由此数列的偶数项组成的新数列的前n项和.na123,nna解:其偶数项也组成等比数列,首项为:2126,3.baq公比1(1)3(91).14nnnbqSq二、拆项转化法解:例2.已知数列满足求其前n项和.na32,nnannS1221(31323)(222)3(1)2(21)3(1)22.2212nnnnnSaaannnnn三、倒序相加法na121231.nnnnnnSaCaCaCa121231,nnnnnnSaCaCaCa解:例3.已知数列为等差数列,求12111.nnnnnnnnnnSCaCaCaa……(1)……(2)由于11211,(),,rnrnnnnnCCrnaaaaaa且01112110111111112()()()()()()2.()2.nnnnnnnnnnnnnnnnnnSaaCaaCaaCaaCCCaaSaa四、裂项相消法例4.解:1111.12123123nSn求和12112(),123(1)1111112[(1)()()]2231122(1).11nnannnnnSnnnnn五、通项化归法解:例5.求数列的前n项和.nS2211,1,1,,1naaaaaa22(1).(1)123;2(2).1[()]11(1)[].11nnnnaannnaaaaaaaaaanaaaaaanaannnn若=1,则=n,则:S1-若1,则=,则:1-1-1-1-S1-1-1-0,naSn注:当时满足情形(2),故不必单独讨论!六、有理化求和na解:例6.已知数列为等差数列,公差为d,求数列前n项和.nS11nnaa1111213211111(),1[()()()]1().nnnnnnnnnnnnaaaaaadaaSaaaaaadaad七、递推累加法例7.解:2222123.nSn求和33233233233233233223222(1)331,2131311,3232321,4333331,(1)3(1)3(1)1.(1)13(12)3(12),(1)(1)131212(1)(21).36nnnnnnnnnnnnnnnnnnnn累加得:八、分组求和法111111242.2482nnnS(2).求和解:例8.(1).已知数列满足求其前n项和.na(1),nannnS2222(1),(12)(12)1(1)1(1)(21)(1)(2).623nnannnnSnnnnnnnnnn解:11111(1242)()248211(1)211222.121212nnnnnnnS九、奇偶讨论法nS解:例9.求数列的前n项和.11,3,5,7,,(1)(21),nn212,1357(1)[221](13)(57)[(43)(41)](2)(2)(2)2;knnnkSkkkkn当为偶数,即时212122121,2(1)[41]2(41)21.:(1).knkkknnnnkSSSakkkkknSn当为奇数,即时综上可得十、等价转化法nS解:例10.求数列的前n项和.21()nnxx2222422422222222222211()2,111()()2.4;(1)(1)(1)(1)22.11(1)nnnnnnnnnnnnnnnaxxxxSxxxnxxxSnxxxxxxSnnxxxx当x=1时,当x1时,十一、巧用数列性质nanS12310,paaaa解:例12.在等差数列中,求.12310,aaaap98,nnnaaaq98,nnnqaaa1213210912110911()()()().,10(),()().220nnnnnnnnnnpqaaaaaaaaaaaaaaaapqnaanpqS由等差数列性质有